黄色小说视频-日本少妇高潮抽搐-国内自拍av-天堂中文资源在线-蜜桃视频在线入口www-91久久综合-亚洲视频在线一区-日日夜夜拍-国产精品资源在线观看-欧美激情国产精品免费-人妻少妇久久中文字幕-成人免费无码大片a毛片-香蕉污视频在线观看-日本电影成人-国内精品久久99人妻无码

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業(yè)資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

嫩草嫩草嫩草嫩草 | 亚洲男人天堂网 | 亚洲最大av网站 | 黄色片在线看 | 极品白嫩少妇无套内谢 | 日韩精品久久久久久久酒店 | 艳母免费在线观看 | 天天射夜夜操 | 久久久综合网 | 日本三级视频 | 国产欧美综合一区二区三区 | 日韩一级 | 日韩精品电影在线观看 | 国产破处视频 | 国产午夜无码视频在线观看 | 亚洲av无码国产精品久久不卡 | 日韩色网 | 黄色av电影 | 国产做爰xxxⅹ久久久精华液 | 18视频在线观看男男 | 艳母免费在线观看 | 五月婷综合 | 51调教丨国产调教视频 | 国产中出 | 一区二区在线观看视频 | 欧美三级网站 | 免费久久久 | 精品欧美 | 久久777| 男人勃起又大又硬图片 | 韩国伦理在线 | 九九视频在线观看 | 嫩草视频在线观看 | 亚洲色图自拍 | 天天干天天操天天爽 | 夜色在线影院 | 99在线免费观看 | 高h视频在线观看 | 亚洲国产成人精品女人久久久 | 国产免费无码一区二区 | 亚洲12p| 国产麻豆天美果冻无码视频 | 青青草免费在线观看 | 白丝校花扒腿让我c | 毛片免费一区二区三区 | 亚洲a视频| 欧美丰满老熟妇aaaa片 | 强行糟蹋人妻hd中文字幕 | 全部免费毛片在线播放高潮 | 日韩免费在线观看 | 奇米成人 | 一区二区在线视频 | 亚洲精品乱码久久久久久蜜桃欧美 | 亚洲色在线视频 | 火影黄动漫免费网站 | av女优在线播放 | 国产无码精品一区二区 | 亚洲爆乳无码一区二区三区 | 丁香婷婷激情 | 亚洲一区二区三区在线视频 | 精品蜜桃一区二区三区 | 亚洲爆乳无码一区二区三区 | 色综合av | 久久亚洲综合 | 国产精品视频久久久 | 韩国三级在线播放 | 国产精品偷拍 | 亚洲综合免费观看高清完整版在线 | 一本大道久久久久精品嫩草 | 国产麻豆天美果冻无码视频 | 日本天堂在线 | 一区二区三区免费在线观看 | av大帝| 亚洲狠狠爱 | 靠逼动漫| 成人播放器 | 久久综合久色欧美综合狠狠 | 丰满少妇一区二区三区 | 午夜在线免费视频 | 少女情窦初开的第4集在线观看 | 少妇精品无码一区二区三区 | 一道本在线视频 | 日韩在线不卡视频 | 毛片区 | 成人av影视| 成人91看片| 91导航 | 男女h黄动漫啪啪无遮挡软件 | 久久久久久久无码 | 国产精品123区 | 宝贝乖~胸罩脱了让我揉你的胸 | 国产在线观看免费视频今夜 | 欧美亚洲一区二区三区 | 欧美日韩一区二区在线 | 91五月天| 成人在线网站 | 亚洲不卡 | 69天堂| 日韩a视频 | 中文字幕乱码人妻二区三区 | 午夜在线视频 | 日韩午夜精品 | 婷婷久久五月天 | 国产人成一区二区三区影院 | 精品人妻一区二区三区日产 | 黄色香蕉视频 | 久久久久麻豆v国产精华液好用吗 | 最好看2019中文在线播放电影 | 日韩高清在线 | 天天操夜夜爽 | 国产麻豆交换夫妇 | 国产在线观看 | 免费视频一区 | 红杏网站 | 免费一区 | 亚洲视频在线免费观看 | 国产色视频 | 亚洲精品第一页 | 国产一区二区电影 | 91精品一区二区 | 动漫美女无遮挡免费 | 亚洲欧洲av | 香蕉综合网 | 黄色av日韩 | 少妇高潮一区二区三区99 | 日韩高清在线 | 日韩精品在线免费观看 | 日日日操操操 | 欧美老熟妇乱大交xxxxx | 欧美男人天堂 | 日本免费在线 | 少妇肥臀大白屁股高清 | 日批视频网站 | 国产午夜精品一区二区 | 日韩欧美中文 | 免费h漫禁漫天天堂 | 欧美视频二区 | 午夜av网站 | 成年人免费网站 | 好吊视频一区二区三区 | 日韩精品久久久久久久 | 吃奶动态图| 天天干夜夜 | 黄色三级网 | 免费看成人片 | 在线观看黄色 | 色久综合 | 91欧美大片 | 久久久久久精 | 熟妇人妻中文字幕无码老熟妇 | 国产精选视频 | 日韩黄色网址 | 东北毛片 | 美日韩一区二区 | 国产黄色在线观看 | 影音先锋成人 | 国产理论| 九九久久免费视频 | 秋霞毛片 | 三年大全国语中文版免费播放 | 久久久黄色| 草莓香蕉视频 | 欧美激情影院 | 自拍偷拍第一页 | 亚洲经典一区二区 | 91禁看片 | 97人妻人人揉人人躁人人 | 久久高清无码视频 | 亚洲国产精品无码久久久久高潮 | 欧美性猛片aaaaaaa做受 | 久久人人爽| 亚洲精品在线观看视频 | 国产成人综合视频 | 精品久久久久久久久久久久久 | 亚洲免费一区二区 | 欧美草草 | 无码人妻精品一区二区中文 | av高清在线观看 | 91亚洲视频 | 天堂网在线视频 | 国产一区二区在线免费观看 | 国产精品福利视频 | 中文字幕一区二区三区人妻在线视频 | 国产精品九九九 | 老司机午夜福利视频 | 色爱天堂| 国产黄色在线 | 熟女肥臀白浆大屁股一区二区 | 国产毛片视频 | 综合久久99 | 香港大片大全免费 | 日本免费视频 | 一区二区免费视频 | 欧美丰满老熟妇xxxxx性 | 久久久久久av | 97视频免费在线观看 | 亚洲无遮挡 | 人妻无码中文字幕 | 亚洲激情网 | 一级片在线免费观看 | 狂躁美女大bbbbbb黑人 | 国产成人片 | 久久久久免费 | av无码av天天av天天爽 | 国产免费高清 | 日韩一区二区在线播放 | 亚洲精品乱码久久久久久蜜桃欧美 | 男人和女人免费观看电视连续剧 | 久久综合在线 | 中文字幕一区二区三区人妻在线视频 | 大地资源二中文在线影视观看 | 天天插天天干 | 四虎黄色网址 | 曰韩毛片 | 欧美人喂奶吃大乳 | 96日本xxxxxⅹxxx70 | 国产成人免费 | 久久精工是国产品牌吗 | 岛国精品| 日本视频免费 | 中国一级特黄真人毛片免费观看 | 嫩草视频在线观看 | 韩国大尺度电影在线观看 | 欧美丰满少妇人妻精品 | 麻豆91精品91久久久 | 欧美一级精品 | 操日本美女 | 婷婷导航 | 国产美女高潮 | 亚洲av无码久久精品色欲 | 揉我啊嗯~喷水了h视频 | 国产精品理论片 | 肥婆大荫蒂欧美另类 | 亚洲视频二区 | 精品在线一区 | 一区二区三区免费在线观看 | 国产精品123 | 日本视频在线观看 | 婷婷综合| 成人手机在线视频 | 国产高清免费 | 国产又爽又黄视频 | 看片黄全部免费 | 国产精品久久久久无码av | 一区二区三区免费 | 欧美巨鞭大战丰满少妇 | 国产午夜精品久久久久 | 欧美性猛交xxxx乱大交hd | 国产美女网站 | 中文在线资源 | 久久成人精品视频 | 欧美人妻一区二区 | 亚洲精品免费视频 | 中出在线观看 | 美女久久久 | 美女扒开尿口让男人桶 | 午夜av福利 | 色婷婷av777 日本精品视频在线观看 | 一本久 | 黄色大片视频 | 国产精品一区二区在线 | 国产精品久久久午夜夜伦鲁鲁 | 日韩网站在线观看 | 亚洲国产日韩欧美 | 成人精品久久久 | 男男做性免费视频网 | 日本久久网 | 黄瓜av| 日韩在线电影 | 亚洲精品91| 久久久久久综合 | 麻豆免费下载 | 日韩精品免费一区二区在线观看 | 国产中文字幕在线观看 | 亚洲熟伦熟女新五十路熟妇 | 色婷婷在线播放 | 中文字幕一区二区三区四区 | 一区二区三区高清 | 国产美女在线观看 | 一二区视频 | 蜜臀99久久精品久久久久久软件 | 日本三级韩国三级美三级91 | 国精产品一区二区 | 看黄色大片 | 青青草视频在线免费观看 | 青草网| 久久99久久99 | 美国av片 | 成人在线一区二区 | 国产无码精品一区二区 | 丁香花在线高清完整版视频 | 国产性生活视频 | 一区二区三区日韩 | 伊人av在线 | 国产精品午夜福利 | 少妇免费直播 | 午夜黄色 | 精品日韩一区二区三区 | 亚洲av永久无码国产精品久久 | 爱爱91 | 相亲对象是问题学生动漫免费观看 | 久久中文网| 麻豆视频在线免费观看 | 中国免费av| 日韩一本| 免费黄色av | 51精产品一区一区三区 | 女同一区二区 | 日韩中文字幕在线视频 | 中文字幕一区二区人妻电影 | 精品三区 | 欧美韩日 | 九九在线| 亚洲特黄| 狠狠操夜夜操 | 97福利| 亚洲福利片 | av中文网| 一区二区精品 | 爱草视频| 精品999久久久一级毛片 | 亚洲高清视频在线观看 | 被闺蜜玩sm(女绑女) | 香蕉视频免费看 | 超级砰砰砰97免费观看最新一期 | 国产精品91在线 | 久久欧美| 日日夜夜狠狠 | 欧美激情在线 | 欧美一级视频在线观看 | 亚洲国产激情 | 国产一区二区在线视频 | 香蕉视频免费在线观看 | 国产伦精品一区二区三毛 | 久色网 | 欧美一区二区视频 | 三级伦理片 | 波多野结衣一区二区三区四区 | 成人黄色在线视频 | 免费黄色在线 | 黄色一级片视频 | 成人免费看片'在线观看 | 成人超碰 | 国产剧情自拍 | 超碰免费在线 | 国产aⅴ激情无码久久久无码 | 久草免费福利视频 | 99香蕉视频| 无码人妻久久一区二区三区蜜桃 | 爱爱短视频| 美日韩av | 91亚洲一线产区二线产区 | av黄色 | 一区二区三区在线观看 | zzjizzji亚洲日本少妇 | 人人爽人人| 高h视频在线 | 亚洲精品成人在线 | 激情六月婷婷 | 四虎黄色影院 | av大帝| 婷婷综合五月天 | 亚洲91视频 | 天天躁日日躁狠狠躁 | 一区二区免费视频 | 国产精成人品 | 黄色网址视频 | 欧美xxxx日本和非洲 | 欧美在线不卡 | 国产精伦 | 香蕉综合网 | 欧美视频第一页 | 午夜在线观看视频18 | 毛片一区二区三区 | 免费视频91蜜桃 | 密桃成熟时在线观看 | 麻豆一级片| 色哟哟网站| 又黄又爽的网站 | 国产在线一区二区 | 日韩一区二区三区精品 | 久久精品亚洲 | 中国白嫩丰满人妻videos | 亚洲h视频 | 香蕉久久a毛片 | 乖乖女的野男人们np | 亚洲理论片 | 成人国产| 久久91| 黄色小说在线播放 | www.超碰| 日韩特黄| 99成人国产精品视频 | 国产精品天美传媒入口 | 日本中文字幕一区 | av黄网| 久久久久久久国产精品 | 黄色精品视频 | 97人人干 | 两性囗交做爰视频 | 成年人视频在线免费观看 | 亚洲精品国偷拍自产在线观看蜜桃 | 男人吃奶视频 | 色哟哟在线观看 | 欧美一级精品 | 欧美激情性做爰免费视频 | 一级做a视频 | 精品人妻无码一区二区三区 | 三级黄色片网站 | 一级在线| 91久久久久 | 福利二区 | 日韩字幕 | 被室友玩屁股(h)男男 | 日本大尺度做爰呻吟舌吻 | 男女交性视频播放 | 在线观看www | 黄色av网站在线观看 | 欧美厕所偷拍 | 高h视频在线观看 | 久久久久久久电影 | 制服.丝袜.亚洲.中文.综合 | 男人天堂亚洲 | 中文字幕+乱码+中文乱码91 | 老妇高潮潮喷到猛进猛出 | 欧美a在线 | 伊人久久国产 | 国产又粗又猛又爽又黄的 | 99久久人妻精品免费二区 | 国产精品91视频 | 久久亚洲精品视频 | 91资源站| 日本久久视频 | 六月天婷婷 | 日韩av成人| www.超碰在线 | 午夜操一操 | 免费网站观看www在线观看 | 精品国产精品三级精品av网址 | 欧美一级淫片 | 午夜性色 | 久久精品99久久久久久 | 成人一级毛片 | www.亚洲精品 | 羞羞的视频在线观看 | 久久久www成人免费精品 | 大地资源在线观看免费高清版粤语 | 成人精品久久 | 校草调教喷水沦为肉奴高h视频 | 人妻无码中文字幕免费视频蜜桃 | 自拍偷拍亚洲 | www.麻豆.com| 日本二区 | 日日爽 | 特级丰满少妇一级aaaa爱毛片 | 青青国产视频 | 麻豆91精品91久久久 | 久久视频在线免费观看 | 天天干视频 | 99色综合 | 国产小视频在线播放 | 瑟瑟视频在线观看 | 中国特级毛片 | 国产高清精品软件丝瓜软件 | 日本高清不卡视频 | 51免费看成人啪啪片 | www.香蕉视频 | 法国空姐电影在线观看 | 欧美性高潮 | 一区二区三区在线看 | 91在线视频免费观看 | 美女一区二区三区 | 人人综合网 | 天天综合久久 | 午夜福利视频一区二区 | 国产一区在线免费观看 | 精品一区二区三区三区 | 五月婷在线 | 在线观看国产一区 | 国产福利小视频 | 黄色免费网 | 青娱乐精品 | 四虎黄色 | 久久av一区| 日本福利网站 | 德国空姐2电影在线观看 | 免费一区二区三区 | 成人做爰100 | 欧美乱妇狂野欧美在线视频 | 五月天激情综合网 | 国产青青草 | 欧美夜夜 | 亚洲视频一区二区 | 国产精品一区二区在线观看 | 三年大片在线观看 | 手机看片日韩 | 污片网站 | 精品欧美 | 欧美成人影院 | 性xxxx狂欢老少配o | 大j8黑人w巨大888a片 | 91天堂在线 | 日本黄色高清视频 | 欧美草草 | 人人澡人人爱 | 91网站免费看 | 干爹你真棒插曲免费 | 91在线无精精品一区二区 | 波多野结衣一区二区三区四区 | 欧美激情视频一区二区三区不卡 | 欧美特黄| 亚洲h | 91免费视频 | 国产不卡在线 | 91精品国产综合久久久蜜臀九色 | 国产做爰xxxⅹ高潮视频12p | 怡红院视频 | 亚洲成人精品 | 国产综合亚洲精品一区二 | 尤物av在线 | 日韩欧美精品一区 | av手机在线观看 | 狠狠撸狠狠操 | 老妇荒淫牲艳史 | 夜夜精品视频 | 亚洲日本在线观看 | 亚洲字幕 | 国产日韩一区二区三区 | 欧美亚洲| 大尺度做爰床戏呻吟舒畅 | 国产精品视频 | 亚洲精品一区二三区不卡 | 韩国精品一区 | 91精品国产欧美一区二区成人 | 午夜视频免费观看 | 成人性生交大全免 | 久久久精品电影 | 天天爱综合 | 久久夜色精品国产欧美乱极品 | 国产在线一区二区三区 | 青青草av | 91美女视频 | 亚洲精品一区中文字幕乱码 | 俄罗斯av | 91久久| 欧美一区二区三区 | 亚洲少妇视频 | 国产视频a | 波多野结衣在线 | 黄色大片免费观看 | sm调教母狗 | 老司机久久| 日韩欧美色图 | 国产欧美精品一区二区色综合 | 国产中文 | 中文字幕一区二区三区人妻在线视频 | 日本www色 | 在线免费看毛片 | 国产一区二区三区在线免费观看 | 制服丝袜在线播放 | 人人干人人看 | 日本高清不卡视频 | 国产精品99久久久久久久久久久久 | h网站在线 | 中文字字幕在线中文乱码 | 91在线视频 | 操欧美老女人 | 欧美你懂的 | 中国老熟女重囗味hdxx | 五月天婷婷综合 | 天天射综合 | 免费在线播放 | 中国免费看的片 | 神马午夜伦理 | 蜜桃av在线 | 欧美作爱视频 | 极品美女高潮出白浆 | 激情一区二区 | 久草新视频 | 欧美一区精品 | 中文字幕成人 | 欧美专区在线观看 | 天天干天天色 | 中文字幕av一区 | 91在线| 99中文字幕 | 国产免费一区二区 | 在线你懂得 | 亚洲天堂网在线观看 | 黄片一区二区 | 欧美精品一区二区三区蜜臀 | 欧美日韩一区二区三区四区 | 国产一区二区三区在线看 | 欧洲女性下面有没有毛发 | 怡红院亚洲| 久久香蕉网 | 美日韩一区二区 | 男人操女人网站 | 99成人国产精品视频 | 日本一区二区三区在线播放 | www.一区二区 | 日韩视频第一页 | www.一区二区 | 国产精品中文 | 成人国产精品久久久网站 | 亚洲国产片 | 国产传媒视频 | 蜜桃视频网站 | 天天摸夜夜操 | 看片黄全部免费 | 国产十八熟妇av成人一区 | 深夜福利 | 视频在线免费观看 | 日韩精品视频在线 | 国产精品123区 | 被室友玩屁股(h)男男 | 黄色三级带 | 中文字幕一区二区三区人妻在线视频 | 在线亚洲精品 | 制服丝袜在线视频 | 国产麻豆剧传媒精品国产av | av成人在线观看 | 一区二区在线 | 夜夜操天天操 | 欧美日韩片 | 少妇毛片 | 欧美天堂| 亚洲精品久久久久久久久久久 | 爱爱综合 | 人妻少妇精品视频一区二区三区 | 九九九国产 | 夜夜欢天天干 | 亚洲一区中文字幕 | 蜜桃av色偷偷av老熟女 | av网站在线播放 | 日韩视频一区二区 | 色婷婷av | 日韩欧美在线一区 | 国产在线不卡 | 欧美一二区 | 青青操在线观看 | xxx性欧美| gogogo高清在线观看视频 | 麻豆精品国产传媒 | 日韩视频免费观看高清完整版在线观看 | 成人爱爱视频 | 中文一区二区 | 国产成人+综合亚洲+天堂 | 蜜桃av乱码一区二区三区 | 日本激情电影 | 麻豆视屏 | 日韩黄色网 | 操操操操操操操 | 国产美女一区 | 国产激情在线视频 | 午夜性色| 中文字幕亚洲一区 | 欧美成人综合 | 成人久久久久 | 粗暴浪荡羞辱粗口hh | 欧美三级电影在线观看 | 丰满少妇一区二区 | 国产一级二级 | 大咪咪dvd| 国产一区二区在线观看视频 | 色婷婷在线视频 | 国产尤物在线 | 国产精品国产自产拍高清av | 人妻无码中文久久久久专区 | 国产一卡二卡三卡 | 色男人的天堂 | 日韩av高清 | 精品九九 | 影音先锋国产精品 | 色综合99久久久无码国产精品 | 亚洲色图偷拍 | 青青草社区 | 久久在线 | 成人福利视频 | 一级免费视频 | 97人妻精品一区二区三区免 | 好吊视频一区二区 | 另类ts人妖一区二区三区 | 人人爽久久涩噜噜噜网站 | 性欧美xxxx| 色婷婷综合网 | 日本少妇高潮抽搐 | 欧洲精品码一区二区三区免费看 | 青草网 | 亚洲视频免费看 | 国产永久免费 | 草莓视频污app| 欧美大白屁股xxxooo | 中文字幕在线观看视频www | 成人激情视频 | 四虎永久免费 | 成年人黄色片 | 黄色一级大片在线免费看产 | 91激情网| 国产精品久久久久久久久久免费看 | 专业操老外 | 韩国伦理片在线观看 | 久久九九视频 | 玖玖精品| 色导航| 精品无码在线观看 | 亚洲视频中文字幕 | 亚洲一区在线视频 | 五月天av在线| 两性囗交做爰视频 | 久久精品视频18 | 日韩毛片在线 | 91精品国产综合久久久久久 | 黄色网炮| 国产3区 | 天堂资源在线观看 | 伊人久久综合 | 欧美中文字幕在线 | 久久成人免费视频 | 香蕉成人网 | 久久黄色网址 | 天天干天天摸 | 免费观看黄色网址 | 一区二区亚洲 | 超碰国产在线 | av在线天堂 | 中文天堂网 | 狠狠干美女| 婷婷久久五月天 | 男女视频在线观看 | 被闺蜜玩sm(女绑女) | 亚洲美女在线观看 | 国产原创在线 | 日韩视频免费观看高清完整版在线观看 | 末路1997全集免费观看完整版 | 五十路母 | 性巴克成人免费网站 | 日韩成人免费 | 精品久久久久久久久久久久久久久 | 亚洲无av在线中文字幕 | 好吊视频一区二区三区 | 在线免费视频 | www.黄色片| 午夜一级片 | 婷婷综合| 成人av影视 | 成人在线观看免费视频 | 黄色综合网 | 国产一级视频 | 国产一区二区三区在线免费观看 | 精品无码一区二区三区 | 国产又色又爽又黄又免费 | 国产精品麻豆视频 | 三级视频在线 | 香蕉视频在线观看免费 | 欧美综合网| 国产黄色精品 | 亚洲高清一区二区三区 | 色姑娘综合网 | 午夜免费福利 | 免费h片 | 爱爱视频网 | av手机在线 | 宝贝乖~胸罩脱了让我揉你的胸 | 性欧美18 | 美国av片 | 毛片毛片毛片 | 涩涩视频在线观看 | 亚洲免费观看高清 | 在线观看成人av | h片在线免费观看 | 亚洲成人中文字幕 | 欧美性网 | 久久久久久免费视频 | 国产精选视频 | 超碰导航| 黄网在线免费观看 | 国产综合自拍 | 色男人天堂| 在线你懂 | 精品国产av色一区二区深夜久久 | 国产一级免费视频 | 国产伦精品一区二区三区妓女 | 色中色综合 | 黄色电影免费看 | 日韩一区电影 | 91福利影院 | 天天干夜夜爽 | 性爱一级视频 | 麻豆国产av超爽剧情系列 | 欧美一级全黄 | 亚洲视频三区 | 日韩成人免费电影 | 91av在线免费观看 | av中文在线| 成人在线观看网站 | www黄色片 | 日本亲与子乱xxx | 国产精品久久视频 | 亚洲激情一区二区 | 亚洲经典一区二区三区 | 草莓视频污app | 亚洲12p| 成人在线观看免费视频 | 日韩在线观看一区二区 | 麻豆免费看片 | 久久久久亚洲av成人无码电影 | 色婷婷国产精品综合在线观看 | 欧美丰满一区二区免费视频 | 欧美一区精品 | 日韩中文字幕在线视频 | 91视频导航| 精品人妻一区二区三区含羞草 | 伊人在线视频 | 香蕉视频在线观看免费 | 亚洲熟伦熟女新五十路熟妇 | 亚洲色图综合 | 苍老师诊所电影完整版观看 | 亚洲国产精品一区二区三区 | av无码av天天av天天爽 | 亚洲av无码一区东京热久久 | 黑人黄色片 | 人人爽久久涩噜噜噜网站 | 国产视频99 | 91天堂在线 | 亚洲a视频 | 免费看91的网站 | 91精品婷婷国产综合久久蝌蚪 | 日韩av在线网站 | 免费黄色网页 | 人妻精品一区二区三区 | 九九在线 | 单身男女韩剧免费观看 | 91美女片黄| 在线精品国产 | 日剧网 | 欧美日韩中文 | 久久黄色片 | 久久蜜桃 | 九九亚洲 | 1024在线视频| 日本做受 | 蜜桃av色偷偷av老熟女 | 色一情一区二区三区四区 | 天堂在线免费视频 | 在线观看色 | 日韩不卡一区二区 | 韩日一级片 | gogogo高清在线观看视频 | 国产做受高潮 | 一级在线视频 | 亚洲成人黄色 | 黄片毛片| 色爱综合网 | 欧美性猛交bbbbb精品 | 国产日韩欧美精品 | 91麻豆精品国产91久久久久久久久 | 欧美一级片| 国产欧美日韩综合精品一区二区三区 | 色一情一区二区三区四区 | 欧美黑吊大战白妞欧美大片 | 羞羞漫画在线 | 成年人视频免费 | 一二三四区| 亚洲二区在线 | 爱情岛亚洲首页论坛 | www国产精品 | 国产成人在线免费观看 | 国产激情视频在线观看 | 日本人dh亚洲人ⅹxx | 日韩不卡在线 | 欧美久久久 | 国产乡下妇女三片 | 久久精品在线观看 | 免费中文字幕 | av男人天堂网 | 可以免费看黄的网站 | 中文字幕制服丝袜 | 欧美日韩在线播放 | 午夜激情小视频 | 国产欧美日韩综合精品一区二区三区 | 国产裸体美女永久免费无遮挡 | 日韩美女在线 | 日本亚洲欧美 | 国产精品无码在线播放 | 国产高清网站 | 久久久久一区二区 | 夜夜春很很躁夜夜躁 | 午夜视频在线免费观看 | 精品交短篇合集 | 少妇被按摩师摸高潮了 | av电影在线观看 | 一级黄色片在线观看 | 亚洲free性xxxx护士白浆 | 天天躁日日躁狠狠很躁 | 日本一级做a爱片 | 国产成人精品在线观看 | 成人国产精品 | 蜜臀99久久精品久久久久久软件 | 特级黄色录像 | 麻豆视频免费观看 | 黄色小视频在线免费观看 | 亚洲成人自拍 | 一区二区精品 | 黄色片在线 | 亚洲精品999| 国产精品片 | 国产视频第一页 | 国模一区二区 | 国产视频第一页 | 中文字幕在线观看免费 | 免费在线观看视频 | 亚洲精品观看 | 亚洲青青草 | 国产ts丝袜人妖系列视频 | 黄色大片视频 | 日本女人毛茸茸 | www.国产在线 | 日本黄色免费 | 国产一区久久 | 久久有精品 | 中文字幕人妻一区二区三区 | 日本特级片 | 中文字幕一区二区三区四区五区 | 国产精品久久久久毛片大屁完整版 | 青青在线| 国产免费一区 | 欧美色图一区 | 无码精品一区二区三区在线播放 | 日韩精品视频一区二区三区 | 一级免费毛片 | 久久久久久电影 | 日韩av手机在线观看 | 日日操操 | 亚洲视频中文字幕 | 国产又黄又爽 | 性生活毛片| 一区二区三区在线看 | 久草网址 | 丰满人妻一区二区 | 欧美不卡在线 | 精品美女| 色香蕉视频 | 亚洲色图一区二区 | 欧美性护士 | 小箩莉末发育娇小性色xxxx | 91九色porny国产 | 人妻精品久久久久中文字幕69 | 亚洲激情片 | 日韩福利片 | 国产一区二区在线观看视频 | 久久久久亚洲精品 | 久草资源 | 在线观看日韩av | 成人免费黄色 | 浓精喷进老师黑色丝袜在线观看 | 一级免费片 | 少妇高潮露脸国语对白 | 91精品国产成人观看 | 国产成人+综合亚洲+天堂 | 欧美性猛交xxxx乱大交3 | 黄色免费在线视频 | 国产高清一区二区三区 | 密臀av在线 | 国产三级精品三级在线观看 | 亚洲色欲色欲www在线观看 | 中文字幕一区二区三区人妻电影 | 日本少妇xxxx| 成人综合网站 | 日批视频网站 | 暖暖爱免费观看高清在线遇见你 | 麻豆网站 | 天天射综合 | 日韩激情小说 | 青娱乐青青草 | 免费观看av网站 | 在线看91| 色婷婷亚洲| 国产美女精品视频 | 日本黄色免费视频 | 亚欧在线 | 国产真实乱人偷精品人妻 | 国产午夜精品久久久久 | 91在线观看免费高清完整版在线观看 | 国产一级视频 | 亚洲综合影院 | 欧美亚洲一区二区三区 | 欧美三级在线播放 | 一级黄片毛片 | 黄色网页大全 | 亚洲你懂的 | 亚洲av毛片 | 国语对白 | 日本电车痴汉 | 骚虎视频在线观看 | 在线欧美| 午夜爽爽爽 | 日韩高清国产一区在线 | 国产一二三视频 | 荫蒂被男人添免费视频 | 日韩欧美在线视频 | 精品伊人| 夫妻露脸自拍[30p] | 91婷婷 | 大地资源在线观看免费高清版粤语 | 久久久中文 | 999视频 | 国产无精乱码一区二区三区 | www.亚洲| 扒开伸进免费视频 | 国产人妻人伦精品1国产 | 亚洲青青草 | 日韩欧美三区 | 蘑菇福利视频一区播放 | 久久一级片 | 69免费视频 | 91亚洲精品久久久久久久久久久久 | 色精品 | 久久只有精品 | 五月网站 | 91亚洲精品国偷拍自产在线观看 | 国产综合亚洲精品一区二 | 亲女小嫩嫩h乱视频 | 色偷偷噜噜噜亚洲男人 | 久草视频免费 | 亚洲精品网站在线播放gif | 午夜久久久 | 成人伊人网 | 91在线网址 | 日韩精品免费视频 | 成人性生交大片免费卡看 | 香蕉视频在线观看免费 | 天堂中文在线视频 | 欧美三级在线播放 | 九九精品在线观看 | 日韩特级片 | 国产伦精品一区二区三毛 | 玉足女爽爽91 | 蜜桃视频网| 亚洲天堂中文字幕 | 四虎成人影视 | 国产色片 | 色婷婷综合久久久中文字幕 | 黄色在线免费观看 | 免费处女在线破视频 | 欧美一区二区视频 | 伊人网在线视频 | 91视频一区二区三区 | 国产精品网站在线观看 | 一区二区三区高清 | 亚洲综合视频在线观看 | 日本黄a三级三级三级 | 奇米久久| 91麻豆成人 | 在线免费看a | 亚洲精品一区二区三区精华液 | 中文字幕视频一区 | 亚洲av无码久久精品色欲 | 婷婷五月在线视频 | 未满十八18禁止免费无码网站 | 亚洲福利 | 中文字幕在线观看av | 中文字幕在线一区 | 成人久久| 男欢女爱久石 | 男女无遮挡xx00动态图120秒 | 日韩视频网 | 中文字幕2018 | 强辱丰满人妻hd中文字幕 | 99毛片| 91亚洲精品乱码久久久久久蜜桃 | 欧美在线一区二区 | 拍真实国产伦偷精品 | 中文字幕一区二区久久人妻 | 日批在线观看 | 依人在线| 欧美一区二区在线观看 | av黄色小说 | 天天摸天天操 | 91视频官网| 少妇高潮一区二区三区99 | 国产精品网站在线观看 | 国产精品久久久久久久久久久免费看 | 国产精品久久久久无码av | 国产精品久久久久久久久 | 日韩精品网| 人人爽人人干 | 草莓视频黄版 | 不卡在线视频 | 色翁荡息又大又硬又粗又爽 | 欧美日韩视频在线 | 亚洲三级视频 | 久久综合久色欧美综合狠狠 | 在线免费观看视频 | 国产黑丝在线观看 | 国产在线视频一区 | 国产小视频在线 | 黄视频网站在线观看 | 名校风暴在线观看免费高清完整 | 女人被男人操 | 日韩人妻一区二区三区 | 一区二区三区四区在线 | 短裙公车被强好爽h吃奶视频 | 亚洲第一色 | 啪啪免费网站 | 美女喷水网站 | 青青草视频免费观看 | 精品乱子伦一区二区三区 | 欧美国产日韩在线 | 四虎8848精品成人免费网站 | 四虎网站| 亚洲综合视频在线观看 | 日本伊人网 | 91久久久久久久 | 国产成年妇视频 | 午夜激情视频 | 色九九九 | 51成人做爰www免费看网站 | 欧美性猛交一区二区三区精品 | 成人a毛片 | 四季av一区二区凹凸精品 | 日韩一区二区三区四区 | 黄色小视频在线免费观看 | 久久久久一区二区 | 女人脱了内裤趴开腿让男躁 | 日本久久网 | 久久亚洲视频 | 欧美日韩国产在线 | 久久精品毛片 | 国产一区二区不卡 | 六月色| 黄色大片一级 | 亚洲激情图 | 天天操天天操天天操 | 中文字幕在线视频观看 | 亚洲免费观看高清 | 99热这里 | 一级特黄肉体裸片 | 国产亚洲色婷婷久久99精品91 | 国产美女自拍 | 91精品国产综合久久久蜜臀九色 | 天天干夜夜干 | 按摩害羞主妇中文字幕 | 国产调教 | 九九精品视频在线观看 | 91视频免费在线观看 | 欧美一区二区三区免费 | 中文字幕一二三 | 亚洲三级在线 | 免费成年人视频 | 69精品人人人人 | 91蝌蚪91九色 | 亚洲精品免费观看 | 美女极度色诱图片www视频 | 97人人澡 | 超碰97在线免费观看 | 麻豆国产av超爽剧情系列 | 国产欧美日韩在线 | 九九热精品 | 欧美色综合天天久久综合精品 | 亚洲一区二区视频在线观看 | 日韩一级大片 | 在线观看视频一区二区 | 欧美日韩一二三区 | 韩日在线视频 | 看免费毛片 | 亚洲av成人无码网天堂 | 黄色小视频在线播放 | 亚洲国产精品自拍 | 欧美午夜影院 | 国产原创精品 | 偷拍一区二区三区 | 亚洲午夜av久久乱码 | 亚洲麻豆 | 尤物videos另类xxxx | 亚洲精品成人在线 | 亚洲美女在线观看 | 国产色哟哟 | 国产精品呻吟 | 99精品视频在线观看 | 五月综合色 | 欧美日韩精品久久久免费观看 | 成人在线免费看 | 人妻一区二区三区四区 | 国产精品伦子伦免费视频 | 精品黑人一区二区三区在线观看 | 国产资源在线观看 | 久久在线视频 | 国产日韩一区二区三免费高清 | 女同一区二区 | 国产精品毛片 | 成年女人免费视频 | 久久精品视频在线观看 | 一级片毛片 | 黑人操日本女人 | 色99999| 91青青草 | 韩国黄色网址 | 四虎新网址 | 日韩精品久久久久久久酒店 | 久操视频在线观看 | 成年人在线观看视频 | 一级免费黄色片 | 五号特工组之偷天换月 | 蜜臀视频在线观看 | 九九国产视频 | 青青青视频在线 | 国产成人在线观看免费网站 | www.久久 | 国产小视频在线播放 | 爱爱综合 | 四虎在线观看视频 | 国产又粗又猛又爽 | 在线观看成人av | 亚洲视频中文字幕 | 欧美成人a | 超碰97在线播放 | 国产免费无码一区二区 | 久久这里只有 | 精品免费 | 村姑电影在线播放免费观看 | 洗濯屋在线观看 | 久久免费看 | 国产卡一卡二 | 一区二区三区免费看 | 怡红院网站 | 午夜成人免费视频 | 伊人久久综合 | 国产精品乱码 | 国产精品片 | 在线观看国产一区 | 91在线观看免费高清完整版在线观看 | 国产精品久久久久永久免费看 | 欧美久草 | 中文字幕乱码在线人视频 | 伊人影院在线观看 | 欧美视频 | 美女黄色一级片 | 欧美一卡二卡 | 一区二区三区在线观看视频 | 吻胸摸激情床激烈视频 | 欧美性高潮 | 欧美日韩国产在线播放 | 成人午夜又粗又硬又大 | 久久久久久久亚洲 | 国产偷人妻精品一区 | 成人免费在线电影 | 在线不卡视频 | 黄色性视频 | 国产精品一| 欧美 变态 另类 人妖 | 国产一级片 | 粗暴浪荡羞辱粗口hh | 日本人妻一区 | 天天操网站| 日韩欧美三级 | 日韩性视频| 91老师国产黑色丝袜在线 | 亚洲精品一二三区 | 无码精品一区二区三区在线 | 一区二区三区久久 | 久久伊人网站 | 污视频在线 | 亚洲精品视频在线播放 | 精品国产乱码久久久 | 操欧美老女人 | 在线观看av免费 | 激情中文字幕 | 亚洲久草 | 久在线视频 | 色中色综合 | 一级a毛片免费观看久久精品 | 欧美激情视频一区二区 | 九九自拍| 欧美黄色影院 | 丁香五香天堂网 | av激情网| 国产一级片视频 | 日韩激情在线观看 | 最好看的2019中文大全在线观看 | 国产精品一| 天堂中文在线观看 | 亚洲小说春色综合另类 | 欧美在线| 91亚洲精品久久久久久久久久久久 | 91成人在线观看喷潮动漫 | 国产高清毛片 | 久久精品99久久久久久久久 | 日韩黄色一级片 | 国产一区二区三区视频 | 国产激情在线视频 | 免费av在线播放 | 精品人妻一区二区三区日产乱码卜 | 国产精品色| 久久黄色片 | 国产成人精品一区二区三区视频 | 横恋母在线观看 | 日本精品在线 | 涩涩五月天 | 国产精品激情 | 久久久久久久久免费看无码 | 免费国产| 男女激情网站 | 国产在线a| 色综合小说 | 米奇影院7777免费观看高清完整喜剧电影 | 一级做a视频 | 亚洲日日夜夜 | 免费毛片视频 | 国精产品99永久一区一区 | 高中男男gay互囗交观看 | 艳妇乳肉豪妇荡乳xxx | 久久香蕉网 | 精品少妇人妻一区二区黑料社区 | 五月婷婷在线观看 | 天天色影院 | 91精品在线播放 | 大波大乳videos巨大 | 日日干视频 | 一区二区三区在线播放 | 在线不卡视频 | 国产一级片在线 | 亚洲在线一区二区 | 欧美午夜剧场 | 黄色一级大片在线免费看国产一 | 少妇高潮灌满白浆毛片免费看 | 欧美亚洲一区 | 亚洲无人区码一码二码三码的含义 | 亚洲综合电影 | 中文字幕在线免费视频 | 欧美一区二区免费 | 免费的黄色网址 | 亚洲视频一区二区三区 | 少妇真人直播免费视频 | 视频在线一区 | 偷拍一区二区 | 伊人网站 | 免费午夜视频 | 毛片一区二区 | 六月天婷婷 | 人妻一区二区三区四区 | 99久久视频 | 久久综合伊人 | 国产福利视频 | 成人精品 | 亚洲码无人客一区二区三区 | 欧美一级黄 | 一本色道久久综合 | 嫩草在线观看 | 非洲一级片 | 中国女人真人一级毛片 | 国产免费久久 | 国产在线不卡视频 | 不卡免费视频 | 亚洲视频精品 | 国产精品丝袜 | 在线看91 | 天天操夜夜撸 | 91麻豆精品国产91久久久久久久久 | 亚洲1区| 中文字幕在线视频观看 | 亚洲成人精品 | 久久久久久久久久久久久久久 | 欧美大黄| 日韩视频免费观看高清完整版在线观看 | 久久嫩草精品久久久久 | 精品爆乳一区二区三区无码av | 91资源站| 91亚洲国产 | 91精品久久香蕉国产线看观看 | 五月色综合 | 中文字幕在线观看一区二区三区 | 中文字幕少妇 | 亚洲香蕉 | 日批免费视频 | 国产福利一区二区三区 | 国产婷婷色一区二区三区 | 一区二区三区四区视频 | 国产区在线 | 无码人妻精品一区二区中文 | 综合激情网 | 红桃视频网站 | 大尺度叫床戏做爰视频 | 神马久久久久久 | 一区二区三区av | 91久久国产综合久久91精品网站 | 东北毛片 | 特级西西人体444www高清大胆 | 国产毛片基地 | 无码国产精品一区二区高潮 | 日本一区二区三区在线观看 | 久久精品99久久久久久 | 男女啪啪网站 | 亚洲美女一区 | 亚洲精品一区二区三区在线 | 国产视频一区在线观看 | 小泽玛利亚在线 | 美女视频一区 | 三级在线视频 | 色av综合| 日日操天天操 | 黄色小说在线免费观看 | 日本久久精品 | 草草在线视频 | 国产伦精品一区二区三区88av | 上海贵妇尝试黑人洋吊 | 欧美乱性| 秘密基地在线观看完整版免费 | 国产精品久久久久毛片大屁完整版 | 看av网站| 中文字幕视频在线观看 | 狠狠干av| www久久| 久久综合亚洲色hezyo国产 | 深夜免费视频 | 久久久久久久久久久久 | 日韩欧美网站 | 99久久99久久久精品棕色圆 | 日韩欧美在线视频 | 欧美国产综合 | 熟女人妻一区二区三区免费看 | 亚洲欧美精品 | 91在线无精精品白丝 | 亚洲欧洲一区二区三区 | 国产伦精品一区三区精东 | 亚洲一区二区 | 日韩精品在线免费观看 | av一区在线 | 国产又色又爽又黄刺激在线视频 | 色站综合 | 图书馆的女友在线观看 | 国产精品久久精品 | 一二三四区 | 完美搭档在线观看 | 色综合网站 | 97香蕉碰碰人妻国产欧美 | 日韩av在线电影 | 日本成人免费 | 在线网址你懂的 | 国产1区 | 成人在线观看免费爱爱 | 青青青视频在线 | 成人高潮片免费视频 | 操碰在线视频 | 天码人妻一区二区三区在线看 | 97精品在线| 日本www色| 久草视频观看 | 亚洲国产网站 | 日韩国产一区二区 | gogogogo高清免费完整版视频 | 成人在线免费视频 | 国产乡下妇女三片 | 日本天堂网 | 中国一级黄色大片 | 日批动态图 | av一本| 黄色无遮挡 | 国产91丝袜在线播放 | 动漫美女无遮挡免费 | 国产日韩一区二区三区 | 国内精品一区二区 | 中文字幕精品久久久久人妻红杏ⅰ | 波多野结衣一区二区 | 日韩av第一页 | 美女超碰| 国产成人精品一区二区 | 一区二区三区亚洲 | 亚洲精品国产av | 一本高清dvd在线播放 | 国产无套内射普通话对白 | 精品少妇一区二区三区 | 中国黄色网址 | 中文字幕乱码在线人视频 | 国产一区二区av | 香蕉视频免费在线观看 | 自拍视频国产 | 少妇被按摩师摸高潮了 | www.日韩av| 97香蕉| 日本免费在线 | 中文字幕在线观看一区 | 九色视频在线观看 | 插曲免费高清在线观看 | 成人午夜视频在线观看 | 欧美视频免费在线观看 | 欧美特级黄色片 | 97精品超碰一区二区三区 | 亚洲精品网站在线播放gif | 美丽的姑娘观看在线播放 | 亚洲熟伦熟女新五十路熟妇 | 少妇做爰www | 欧美视频网站 | 99久久99久久久精品棕色圆 | 男女日皮视频 | 九九av | 久久久精品影院 | av自拍偷拍| 欧美卡一卡二 | 亚洲欧美天堂 | 人妻在客厅被c的呻吟 | 国产偷人妻精品一区 | 欧美熟妇精品黑人巨大一二三区 | 亚洲精品在线视频 | 天天色影| 波多野结衣二区 | 国产日韩视频 | 秋霞福利视频 | 国产乡下妇女做爰 | 精品人伦一区二区三区 | 精品人妻一区二区三区日产乱码 | 日韩视频中文字幕 | 亚洲精品成人电影 | 超碰999| 97色婷婷 | 精品乱子伦| 成年人视频在线免费观看 | 欧美日韩a| 高清久久| 欧美二区三区 | 色一区二区三区 | 黄色小视频免费观看 | 日韩免费一区二区三区 | 波多野结衣无限发射 | 久草精品视频 | 亚洲精品国产精品国自产观看浪潮 | 久久发布国产伦子伦精品 | 国产激情视频在线观看 | 97人妻精品一区二区三区软件 | 高h在线观看 | 高清免费视频日本 | 麻豆免费版 | 国产日韩欧美 | 中文字幕黄色 | 欧美三级视频 | 久草视频免费 | 无码人妻精品一区二区三 | 天天看天天操 | 欧美精产国品一二三 | 亚洲一区视频在线 | 日韩精品在线看 | 福利视频网站 | 午夜性视频 | 亚洲综合图 | 狠狠干狠狠操 | 美女久久久久 | 91久久精品日日躁夜夜躁国产 | 97自拍视频 | 中文字幕免费观看 | 国产精品久久午夜夜伦鲁鲁 | 扒开伸进免费视频 | av免费网站| 欧美大片黄| 99久久精品国产一区二区成人 | 成人在线免费播放 | 无码人妻精品一区二区 | 综合色导航 | 日韩免费视频 | 天堂一区二区三区 | 无码人妻精品一区二区三区温州 | 国产一区二区三区四区五区 | 免费播放片大片 | 在线www| 欧美大片18 | 日本免费一区二区三区 | 欧美1区 | 久久久久无码国产精品不卡 | 欧美午夜剧场 | 99自拍视频 | 丁香婷婷六月 | 91免费看视频 | 老牛影视av牛牛影视av | 国内精品视频在线观看 | 午夜视频 | 热久久久| 黄色片a| 黄色av网 | 秋霞成人网| 调教撅屁股啪调教打臀缝av | 国产综合亚洲精品一区二 | 国产又粗又猛又爽又黄视频 | 国产精品久久久久久久久久久免费看 | 男人的天堂视频 | 特级淫片aaaaaaa级 | 午夜性色| 最好看的电影2019中文字幕 | 午夜天堂 | 亚洲国产精品无码久久久久高潮 | 在线观看黄网 | 国产一区二区自拍 | 午夜888| 久久久夜色精品亚洲 | 欧美成人免费视频 | 国产欧美熟妇另类久久久 | 中文字幕在线免费视频 | 亚洲男人的天堂av | 久久69| 午夜激情小视频 | 欧美厕所偷拍 | 欧美高清hd19 | 香蕉成视频人app下载安装 | 国产天堂在线 | 国产又猛又黄又爽 | 麻豆回家视频区一区二 | 欧美精品网站 | 亚洲高清中文字幕 | 久久久综合网 | 男女激情大尺度做爰视频 | 亚洲av激情无码专区在线播放 | 日本a视频 | 波多野结衣黄色 | 精品国产精品三级精品av网址 | 中文字幕久久久久 | 欧美激情综合色综合啪啪五月 | 中文字幕一区二区三区人妻在线视频 | 猛1被调教成公厕尿便失禁网站 | 美女黄色免费网站 | 午夜看片 | 日韩精品久久久久久久 | 亚洲成人免费电影 | 久久av一区二区三区亚洲 | 亚洲成人免费电影 | 香蕉91视频| 亚洲欧美色图 | 爱爱综合网| 日韩综合av| 五月婷婷在线观看 | 成人免费看片载 | 国产激情视频在线 | 97精品在线 | 欧美极品少妇 | 成人性生活视频 | 亚洲天堂视频在线观看 | 超碰av在线| 久久久777 | 日本在线看 | 亚洲一区二区免费视频 | 久久在线视频 | 不卡的av电影 | 91免费版网站在线观看 | 嫩草嫩草嫩草嫩草 | 少妇高潮久久久久久潘金莲 | 火影黄动漫免费网站 | 免费在线看视频 | av手机在线观看 | 快播日韩 | 在线观看一级片 | 精品综合| 可以看av的网站 | 欧美一区二区三区的 | 影音av资源 | 美日韩一区二区三区 | 日本一区不卡 | 久久这里只有 | 91精品国产麻豆国产自产在线 | 国产成人免费观看 | 一本色道久久88加勒比—综合 | 久草视频免费在线 | 人妻无码一区二区三区 | 91中文字幕在线观看 | 国产超帅gaychina男同 | 黄色一级片黄色一级片 | 亚洲一区二区久久 | 亚洲国产网站 | 国产对白videos麻豆高潮 | 四虎黄色网址 | 亚洲小说网 | 日韩欧美在线一区 | 亚洲欧美国产精品专区久久 | 性色av一区二区三区 | 日韩毛片在线 | 久久99免费视频 | 欧美黑人xxx| 精品小视频 | 波多野结衣一区二区三区 | 日韩激情在线观看 | 91视频在线免费观看 | 中文字幕在线免费看线人 | 日韩人妻一区二区三区 | 青青草免费在线观看 | 黄色小视频在线免费观看 | 国内精品久久久久久久 | 国产福利视频在线观看 | 九色91popny蝌蚪新疆 | 日韩怡红院 | 韩国伦理大片 | 色无极亚洲影院 | 免费观看毛片 | 中文字字幕在线中文乱码 | 韩国伦理在线 | 波多野结衣三级 | 亚洲图片在线观看 | 男人在线天堂 | 精品人妻无码一区二区三区 | 亚洲综合图 | 天堂中文网 | 一级日韩 | 天天干夜夜草 | 国产精品一区二 | av一本| 日韩视频精品 | 日韩毛片在线 | 美女黄色免费网站 | 影音先锋成人资源 | 精品福利在线 | 久热伊人 | 韩国大度电影免费版在线看 | 欧美做受高潮6 | 91精品国产aⅴ一区二区 | 在线一区二区三区 | 黄色a视频 | gogo人体做爰大胆视频 | 国产精品久久久国产盗摄 | 黑人操亚洲女人 | 脱女学生小内内摸了高潮 | 久久久在线| 国产精品无码一区二区三区免费 | 萌白酱在线观看 | 国产精品久久久久久中文字 | 久久综合国产 | 国产精品国产精品国产专区不片 | 中文无码熟妇人妻av在线 | 小柔的淫辱日记(h | 麻豆精品久久久久久久99蜜桃 | 精品国产欧美一区二区三区成人 | 奇米影视在线观看 | 欧美精品一区二区在线观看 | 国产精品一区二区入口九绯色 | 91资源在线观看 | 神马久久久久久 | 亚洲色图一区二区三区 | 久久久少妇 | 桃色视频 | 国产色视频一区二区三区qq号 | 91久久国产综合久久 | 黄色女女 | 成年人小视频 | 草草影院在线观看 | 日本视频免费 | 在线观看91 | 91丝袜 | 国产伦精品一区二区三毛 | 久久久久久免费视频 | 欧美大浪妇猛交饥渴大叫 | 婷婷伊人 | 拍国产真实乱人偷精品 | 三上悠亚在线播放 | 久久久噜噜噜久久中文字幕色伊伊 | 影音先锋国产精品 | 久久精工是国产品牌吗 | 欧美成人精品一区 | 国产三级网 | 欧美性生活 | 男生操女生网站 | 国产传媒在线 | 黄色三级小说 | 亚洲精品一区二区 | 一区二区三区四区视频 | 巨乳在线播放 | 一级片黄色 | 足交在线观看 | 91直接看 | 午夜视频在线播放 | 免费网站观看www在线观看 | 熟女毛片 | 久久久精品一区二区三区 | 午夜精品福利视频 | 亚洲天天 | 国产传媒在线播放 | 午夜小视频在线观看 | 粗大黑人巨茎大战欧美成人免费看 | 日本美女裸体视频 | 久草视频免费在线 | 日本成人动漫在线观看 | 最近最好的2019中文 | 免费观看已满十八岁 | 久久午夜精品 | 福利精品| 欧美精| 国产无码精品一区二区 | 国产婷婷 | 欧美成人精品一区二区男人看 | 国精产品一区二区三区 | 欧美人与野| www.蜜臀| 国产精品www | 国产中文在线观看 | 亚洲二区视频 | 麻豆专区 | 麻豆精品一区二区 | 视频在线播放 | 人妻丰满熟妇aⅴ无码 | 狠狠的日 | 国产三级黄色 | 亚洲一区二区久久 | 亚洲高清在线 | 亚洲第一成人网站 | 日日操夜夜爽 | 中文字幕一区二区在线观看 | 美女极度色诱图片www视频 | 欧美不卡视频 | 激情六月天 | 精品少妇3p | 亚洲一区不卡 | 青草视频在线播放 | 久久久噜噜噜久久中文字幕色伊伊 | 日韩在线视频播放 | 香蕉91视频| 国产精品嫩草影院桃色 | 97在线观看免费高清 | 成人福利在线 | 国产欧美日韩一区 | 国产精品一区二区不卡 | 无码精品一区二区三区在线 | 青青操在线 | 成人福利网 | 成人免费毛片果冻 | av福利在线观看 | 超碰99在线 | 色婷婷电影 | 国内老熟妇对白xxxxhd | 久久视频在线免费观看 | 国产高清免费 | 久久99久久99精品免视看婷婷 | 亚色网站 | 精品久久久久久久久久久 | 久草热视频 | 亚洲国产成人精品女人久久久 | mm131丰满少妇人体欣赏图 | 视频在线 | 神马三级我不卡 | 一二区视频 | 国产美女在线播放 | 一级a毛片| 91色视频 | 光明影院手机版在线观看免费 | 成人动漫av | 无码精品一区二区三区在线播放 | 国产精品大片 | 日本大尺度做爰呻吟舌吻 | 美女视频一区二区 | 欧美国产在线视频 | 亚洲精品国产精品乱码不卡√香蕉 | 8x8ⅹ成人永久免费视频 | 成人免费视频网站 | 欧美日韩一二三区 | 欧美熟妇精品黑人巨大一二三区 | 人妻无码一区二区三区 | 91久久久久久 | 天天做天天爱天天爽 | 天堂资源在线观看 | 免费的av| 伊人青青草 | 久久午夜影院 | 中文字幕亚洲综合 | 国产欧美日韩综合 | 中文字幕人妻一区二区 | 放几个免费的毛片出来看 | 无码人妻精品一区二区中文 | 国产h视频| 一个色综合网 | 日日夜夜狠狠 | 国产免费小视频 | 四虎影库 | 天堂8在线| 国产深夜福利 | 华丽的外出在线观看 | 黄色小视频免费看 | 在线你懂 | 一区二区人妻 | 久久久黄色 | av网站入口 | 在线a视频 | 手机av在线 | 91日韩在线 | 中文字幕在线观看 | 黄色免费视频网站 | 欧洲精品码一区二区三区免费看 | 四虎久久| 毛片区 | 天天干天天草 | 国产一区二区视频在线 | 亚洲最大的成人网站 | 成人av小说 | 日本免费网站 | 日韩中文字幕视频 | 99re| 无套内谢少妇高潮免费 | 高清不卡av| 黄色国产视频 | 亚洲福利| 欧美一级片在线观看 | av一区在线 | 青青草原亚洲 | 丰满岳跪趴高撅肥臀尤物在线观看 | 双腿张开被9个男人调教 | 亚洲综合一区二区三区 | 女性裸体下面张开 | 毛片免费一区二区三区 | 欧美操大逼 | 国产精品无码一区二区三 | 日韩精品极品视频在线观看免费 | 又黄又爽的视频 | 好吊视频一区二区三区 | 成年女人免费视频 | 国产精品视频久久久 | 肮脏的交易在线观看 | 日韩视频网 | 色人人| 亚洲毛片视频 | 久久91精品 | 91高清在线 | 日韩在线电影 | 激情五月综合网 | 国产乱论 | 欧美第五页 | 久久国产精品一区二区 | 午夜国产在线 | 国产精品久久久爽爽爽麻豆色哟哟 | 欧美第二页 | 国产精品久久无码 | 四虎免费视频 | www黄色片| 国产乱人乱偷精品视频 | 日韩视频在线播放 | 久久高清免费视频 | 99热在线播放 | 体内精视频xxxxx | 日韩欧美二区 | 麻豆免费版| 大j8黑人w巨大888a片 | 欧美一区二区三区视频 | 伊人网视频| 丁香花电影免费播放电影| 成人黄网免费观看视频 | 夜色资源网 | 久久av一区二区三区 | 天天cao | 亚洲激情图片 | www.婷婷 | 久久露脸国语精品国产91 | 91久久国产综合久久 | 天天看天天爽 | 久久久久久久久久久久久久久久久 | 国产精品一区二区入口九绯色 | 国产一区二区精品丝袜 | 欧美一级黄| 久草视频免费 | 少妇色 | 成人av电影在线观看 | 天天插天天射 | 免费三片在线观看网站v888 | 91视频大全 | 日韩国产一区二区 | 欧美成人毛片 | 亚洲资源在线观看 | 国产成人av在线播放 | mm131丰满少妇人体欣赏图 | 色乱码一区二区三区在线男奴 | 色哟哟av | 国产欧美精品一区二区色综合 | 久久免费视频观看 | 黄色大片在线免费观看 | 欧美混交群体交 | 强开乳罩摸双乳吃奶羞羞www | 国产免费一区二区三区最新不卡 | 蜜臀一区二区 | 国产一级片 | 国产性生活视频 | 久久777 | 国产美女视频 | 欧美日韩一区二区三区四区 | 男人天堂色 | 久久国产精品一区二区 | 黄色性视频 | 波多野结衣网站 | 日韩av资源| 香蕉av在线 | 久久天堂网 | 国产美女视频 | 我们2018在线观看免费版高清 | 精品99视频 | 国内自拍视频在线观看 | 在线麻豆 | 色婷婷一区 | www.婷婷| www.蜜臀| 香蕉视频免费 | 午夜精品一区二区三区在线视频 | 亚洲电影一区二区三区 | 亚洲成人av在线 | 非洲黑人狂躁日本妞 | www伊人| 让男按摩师摸好爽视频 | 日本黄网 | 色中文字幕 | 色婷婷av777 日本精品视频在线观看 | 91学生片黄 | 成人在线免费观看视频 | 欧美日韩久久久 |