黄色小说视频-日本少妇高潮抽搐-国内自拍av-天堂中文资源在线-蜜桃视频在线入口www-91久久综合-亚洲视频在线一区-日日夜夜拍-国产精品资源在线观看-欧美激情国产精品免费-人妻少妇久久中文字幕-成人免费无码大片a毛片-香蕉污视频在线观看-日本电影成人-国内精品久久99人妻无码

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業(yè)資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

国产高清一区二区三区 | 在线免费看黄色 | 国产在线观看网站 | 国产麻豆一区二区三区 | 国产三级精品三级在线观看 | 中文字幕一区在线 | 午夜在线观看视频网站 | 色图综合 | 日韩美女在线 | 97国产成人无码精品久久久 | 日本熟妇毛耸耸xxxxxx | 亚洲激情在线 | 天堂一区 | 免费的av | 午夜激情福利 | 久草网站| 久操网站| 中文字幕第一区 | 欧美草草| 无码一区二区 | gogogo日本免费观看电视剧最 | 国产黄色免费看 | 成人动漫av | www.日韩精品 | 国产区一区 | 亚洲精品影院 | 四房激情| 国内精品国产成人国产三级 | 邻居校草天天肉我h1v1 | 久久久精品 | 精品国产一区二区三区久久久蜜月 | 亚洲小视频在线观看 | 自拍偷拍一区 | 日本理论片午伦夜理片在线观看 | 欧美精品一区二区三区四区 | 欧美性猛交xxxx乱大交蜜桃 | 久久久久中文字幕 | 欧美日本国产 | 精品精品| 一区二区不卡视频 | 国产视频一区在线 | 亚洲深夜福利 | 谁有毛片网站 | 中文字幕一区在线观看 | 日韩av导航 | 伊人精品 | 日本少妇xxxx| 日韩在线免费 | 日韩免费视频一区二区 | 免费在线看视频 | 国产精品一二区 | 久久久影视 | 91麻豆精品国产91久久久久久久久 | 99久久婷婷国产综合精品草原 | 欧美精品久久久久久久 | 国产伦精品 | 91丝袜一区二区三区 | 草莓视频www | 成人在线免费看 | 香蕉成人网 | 国产又粗又猛又黄又爽无遮挡 | www.狠狠 | 夜夜操天天操 | 国产精品777 | 日日操日日干 | 视频一区二区在线 | 日韩精品一区二区三区 | 我和公激情中文字幕 | 在线免费观看黄 | 亚洲爆乳无码一区二区三区 | 国产精品久久久精品 | 超碰999| 捆绑少妇玩各种sm调教 | 娇妻被老王脔到高潮失禁视频 | 永久免费在线观看 | 深夜av | 三级少妇| 一起操网站 | 狠狠干网 | 秋霞在线观看视频 | 国产日韩欧美一区 | 亚洲色图网址 | 欧美黑白配在线 | 国产a久久麻豆入口 | 相亲对象是问题学生动漫免费观看 | 91影音 | 五月婷婷激情综合 | 欧美亚洲在线 | 超碰人人爽 | 国产又粗又猛又爽又黄视频 | 日韩一级黄| 亚洲一区二区在线视频 | 绿巨人在线观看免费观看在线nba动漫 | 99在线免费视频 | 国产精品久久久爽爽爽麻豆色哟哟 | 修仙淫交(高h)h文 | 天堂网2014| 国产一级片 | 一区二区三区在线观看 | 蜜臀久久99精品久久久久久宅男 | 特级淫片aaaaaaa级 | 欧美精品一| 亚洲最大成人网站 | 狂躁美女大bbbbbb黑人 | 黄色三级三级三级三级 | 日韩在线视频免费观看 | 国产伦精品一区二区三区 | 美国av片 | 最好看的2019年中文在线观看 | 日韩人妻一区二区三区 | 欧美不卡一区 | 色在线视频 | 亚洲精品国产无码 | 裸体的日本在线观看 | 中文字幕日本在线 | 91在线精品秘密一区二区 | 亚洲欧美一区二区三区在线 | 91国产精品| 人妻一区二区三区四区 | 神马九九 | 美女爆吸乳羞羞免费网站妖精 | 岛国精品在线播放 | 动漫玉足吸乳羞免费网站玉足 | 中文毛片 | 欧美精品久久久久 | 国产永久免费 | 综合久久久| 美女又爽又黄 | 色哟哟av | 国产激情一区二区三区 | 国产做爰xxxⅹ高潮视频12p | 色人人| 亚洲成人一区二区三区 | 麻豆传媒在线观看视频 | 日本wwwxxx| 国内精品久久久久 | 91亚洲精品国偷拍自产在线观看 | 亚洲免费成人 | 男人插女人下面视频 | 97香蕉碰碰人妻国产欧美 | 香蕉视频黄色 | 亚洲一区二区久久 | 成人免费福利视频 | 欧美一区二区三区在线 | 玖玖在线| 亚洲大尺度 | 另类ts人妖一区二区三区 | 男男h黄动漫啪啪无遮挡软件 | 亚洲激情综合网 | 亚洲不卡视频 | 精品少妇人妻一区二区黑料社区 | 黄色免费在线观看 | 国产做爰免费视频观看 | 波多野结衣三级 | 少妇网| 欧美另类视频 | 天天干天天干 | 99re | 高h视频在线 | 精品国产91乱码一区二区三区 | 国产午夜精品一区二区 | 亚洲欧美日韩在线 | 天天操天天干天天 | 四虎国产 | 成人午夜av | 伊人免费| 色天堂影院 | 邻家有女4完整版电影观看 国产ts丝袜人妖系列视频 | 欧美日本在线 | 麻豆精品| 成人精品久久久 | 无码精品人妻一区二区 | 国产又粗又猛又爽又黄的 | 光明影院手机版在线观看免费 | 欧美99| 国产不卡视频 | 免费看女生隐私 | 欧美自拍视频 | 国内自拍av | 强迫凌虐淫辱の牝奴在线观看 | 黄色性视频| 四虎影院www| 欧美日韩一二三区 | 成年人在线观看视频 | 手机在线看片 | 色av导航| 久久久久久久国产精品 | 五月婷丁香 | 偷拍亚洲色图 | 中文字幕91 | 少妇做爰免费理伦电影 | 一区二区三区影院 | 自拍偷拍综合 | 国产美女精品 | 尤物视频网| 免费成人美女女 | 中文天堂网 | 无码人妻久久一区二区三区蜜桃 | 欧美性生交片4 | 欧美乱性 | 性生活毛片 | 免费看黄色的网站 | 91亚洲精品国偷拍自产在线观看 | 老妇高潮潮喷到猛进猛出 | 欧美黄色网 | 成人羞羞国产免费 | 小yoyo萝li交精品导航 | 91五月天 | 国产精品9 | 欧美成人综合 | 在线日韩欧美 | 欧美日韩中文 | 久久九九视频 | 住在隔壁的她动漫免费观看全集下载 | 国产成人在线播放 | 色一情一区二区三区四区 | 中文在线字幕免费观看 | 成人小视频在线观看 | 一级片日本| 日韩精品免费一区二区在线观看 | 欧美超碰在线 | 免费黄色在线 | 中文字幕+乱码+中文乱码www | 麻豆精品国产传媒mv男同 | 午夜在线免费视频 | 手机免费av| 精品久久网| 麻豆传媒网站 | 久久久久国产 | 综合色婷婷一区二区亚洲欧美国产 | 99视频| 日韩欧美精品一区 | 天堂va蜜桃一区二区三区 | 国产一级18片视频 | 欧美成人毛片 | 91在线播放视频 | 狠狠干狠狠插 | 9.1人网站| 狠狠撸狠狠干 | 国产福利在线视频 | 国产黄色自拍 | 日韩爱爱视频 | 精品欧美一区二区三区 | 国产特级淫片免费看 | 国产日韩欧美在线 | 久久伊人精品 | 日本做爰全过程免费看 | 免费观看已满十八岁 | 露出调教羞耻91九色 | 精品人妻无码一区二区三区 | 免费毛片视频 | 成人伊人网 | 国产精品久久久久久久久久久久 | 国产21区 | 一区二区中文字幕 | 污污视频网站 | 亚洲理伦| 欧美丰满大乳 | 日本三级大片 | 免费看裸体视频 | 大陆一级片 | 成人网站免费观看 | 视频你懂的 | 亚洲精品成人 | 91蝌蚪| 国产免费看 | 亚洲逼逼 | 人妖网站| 久久久久国产精品 | 一级视频在线观看 | 亚洲成人一区 | 色呦呦网站 | 国产精品h | 奇米在线 | www.久久久久久| 91丨porny丨尤物| 黄色片在线免费观看 | a级片网站 | 国产在线拍揄自揄拍无码视频 | 亚洲深夜福利 | 成人高清在线 | 午夜99| 无码国产精品一区二区免费式直播 | 青青草免费在线视频 | 日韩国产一区二区 | 明日叶三叶 | 娇妻被老王脔到高潮失禁视频 | 久久久久久久国产精品 | 饥渴放荡受np公车奶牛 | 无码av免费精品一区二区三区 | 美女在线播放 | 中文字幕在线第一页 | 黄色片一级片 | 在线观看国产精品入口男同 | 香港大片大全免费 | 欧美××××黑人××性爽 | 99成人国产精品视频 | 亚洲av激情无码专区在线播放 | 精品人妻一区二区三区四区不卡 | 天天操网 | 视频一区二区三区在线观看 | 九九热视频在线 | 国产全肉乱妇杂乱视频 | 国产一区不卡 | 久久久噜噜噜久久中文字幕色伊伊 | 久本草精品| 中文字幕一区二区久久人妻 | aaaa毛片| 在线97| 污污网站在线观看 | 国产99久久 | 欧美熟妇精品黑人巨大一二三区 | www.久久久久 | 中文字字幕在线中文 | 一区二区三区视频 | 蜜桃精品噜噜噜成人av | 欧美黄色小说 | 国产午夜精品福利 | 九色视频在线观看 | free性丰满69性欧美 | 日韩在线视频观看 | 日日操夜夜干 | 女仆m开腿sm调教室 欧美混交群体交 | 艳妇乳肉豪妇荡乳av无码福利 | 亚洲熟女乱综合一区二区三区 | 黄色片免费观看 | 成人手机在线视频 | 欧美日韩黄色 | 欧美黑人xxxx | 欧美一区二区三区的 | 麻豆精品久久久久久久99蜜桃 | 中文字幕欧美激情 | 国产免费麻豆 | 精品人妻无码一区二区三区 | 99re在线观看| 亚洲色图激情小说 | 一吻定情2013日剧 | av手机天堂 | 综合一区 | 天天久久| 少妇做爰免费理伦电影 | 午夜精品一区二区三区免费视频 | 四虎8848精品成人免费网站 | 国精产品乱码一区一区三区四区 | 欧美视频免费在线观看 | 久久一级视频 | 精品人伦一区二区三区 | 在线超碰 | 国产精品一| 黄色小说在线免费观看 | av黄色网 | 狠狠操天天操 | 美女破处视频 | 免费一级片 | 亚洲国产91 | 亚洲视频网 | 97超碰在线免费观看 | 91成人在线观看喷潮蘑菇 | 一区二区在线视频 | 久久久久久久亚洲 | 麻豆视频在线免费观看 | 在线观看一区 | 国产做爰视频免费播放 | 国产一级片 | 99国产精品人妻噜啊噜 | 久久久精| 91久久爽久久爽爽久久片 | 成人a视频 | 久热精品在线 | 一本色道综合久久欧美日韩精品 | h在线播放 | 天天影视综合 | 日韩在线视频免费 | 久久视频在线免费观看 | 乳色吐息在线观看 | 女人久久 | 视频在线观看免费 | 男人亚洲天堂 | 91精品国产麻豆国产自产在线 | 黄色aaa| 久久免费高清视频 | 国产伦精品一区二区三毛 | 九九九久久久 | 无码人妻一区二区三区线 | 少妇做爰www | 草莓在线| 欧美大片免费高清观看 | 国产超帅gaychina男同 | 国产不卡在线 | 宅男噜噜噜66一区二区 | 一本色道久久88加勒比—综合 | 亚洲国产网站 | 97视频网站| 一二三四区视频 | 性xxxx狂欢老少配o | 大尺度做爰呻吟舌吻网站 | 91成人看片 | 天堂综合网| gogo人体做爰大胆视频 | 娇妻被老王脔到高潮失禁视频 | 欧美综合色| 国产在线不卡视频 | 色妞色视频一区二区三区四区 | 欧美日韩在线播放 | 影音先锋久久 | 日韩在线中文字幕 | 在线视频一区二区 | 久草国产在线 | 男女啊啊啊 | 亚洲视频在线观看免费 | 波多野结衣无限发射 | 97在线免费观看视频 | aa片在线观看视频在线播放 | 精品一区二区三区四区五区 | 亚洲视频在线免费观看 | 免费看黄色大片 | 午夜视频一区 | 国产精品9 | 中文字幕一区二区三区人妻在线视频 | 日本视频免费 | 欧美做受高潮1 | 国产精品久久午夜夜伦鲁鲁 | 欧洲精品码一区二区三区免费看 | 亚洲精品aaa | 久久午夜电影 | 国产色av| 黄色大片儿 | 极品粉嫩小仙女高潮喷水久久 | 99在线播放 | 欧美三级视频在线观看 | 一本色道综合久久欧美日韩精品 | 亚洲激情一区二区 | 亚洲国产精品一区 | 国产亚洲久一区二区 | 久久人妻少妇嫩草av | 久艹在线| 日日爽夜夜爽 | 日日夜夜精品免费视频 | 中文字幕网站 | 亚洲欧美另类在线 | 亚州av在线 | 久久艳片www.17c.com | 一级黄毛片 | 日韩免费观看视频 | 猛1被调教成公厕尿便失禁网站 | 亚洲激情综合 | 娇妻被肉到高潮流白浆 | 精品久久久久久久久久 | 一级黄色性生活片 | 久久久久亚洲 | 中文字幕精品无码一区二区 | 精品人妻一区二区三区浪潮在线 | 青草视频在线免费观看 | 中文字幕在线观看一区二区 | 成人精品免费 | 日日干视频 | 黑巨茎大战欧美白妞 | 国产精品福利视频 | 成人性爱视频在线观看 | 人妻少妇一区二区三区 | 校草调教喷水沦为肉奴高h视频 | 国产又粗又黄 | 成人久久久 | 欧美久久精品 | 免费v片在线观看 | 天天操天| 婷婷午夜精品久久久久久性色av | 黄色片视频| 日韩高清国产一区在线 | 日本免费一区二区三区 | 在线观看色 | 欧美色老头 | 国产欧美熟妇另类久久久 | 草逼网站 | 狠狠影院 | 牲欲强的熟妇农村老妇女视频 | 麻豆乱码国产一区二区三区 | 性欧美最猛 | 亚洲精品国产精品乱码不卡√香蕉 | 成人av一区二区三区 | 国产福利在线 | 日韩在线中文 | 美女久久| 国产免费一区二区三区最新不卡 | 色av导航| 干爹你真棒插曲免费 | 欧美一级免费 | 欧美特黄视频 | 91香蕉国产 | 快播黄色电影 | 国产做受入口竹菊 | 玖玖在线 | 亚洲综合一区二区 | 在线看国产| 国产精品99久久久久久久久 | 有码一区二区 | 日韩av大片 | 黄色小说在线免费观看 | 午夜你懂的 | 美剧19禁啪啪无遮挡大尺度 | 欧美激情一区二区三区 | 日日夜夜av | 精品少妇人妻一区二区黑料社区 | 国产精品美女高潮无套 | 亚洲免费观看高清完整版在线观看 | 亚洲天天操 | 国产成人精品一区二区三 | 日韩精品久久久久久久酒店 | 秘密基地免费观看完整版中文 | 国产精品久久无码 | 超碰中文字幕 | 波多野结衣av电影 | 北条麻妃一区二区三区免费 | 极品粉嫩小仙女高潮喷水久久 | 无码精品在线观看 | 大尺度做爰呻吟舌吻网站 | 亚洲 欧美 日韩 在线 | 欧美激情在线播放 | 丁香花免费高清完整在线播放 | 肥婆大荫蒂欧美另类 | 老司机免费视频 | 欧美作爱视频 | 天天操天天干天天 | 日韩色网站 | 91精品免费视频 | 日本女人毛茸茸 | 成人精品免费视频 | 男人插女人下面视频 | 成人精品三级av在线看 | 单身男女韩剧免费观看 | 美女丝袜合集 | 精品久久久久久久久久久 | 日韩三级网 | av一本| 东北毛片| 人人爽人人爽人人爽 | 欧美日韩一区在线 | 日韩 欧美 亚洲 | 日本三级吃奶头添泬无码苍井空 | 毛片区| 欧美厕所偷拍 | 九九热在线视频 | 欧美性精品 | 国产精品久久久爽爽爽麻豆色哟哟 | 人人综合 | 中文字幕一区二区三区夫目前犯 | 男人天堂网av | 永久免费看片在线播放 | 中文字幕第一区 | 高清一区二区三区 | 日本人妻丰满熟妇久久久久久 | 奇米影视888| 小柔的裸露日记h | 97视频免费在线观看 | 91欧美激情一区二区三区成人 | 天堂中文网 | 国产精品视频免费 | 麻豆国产在线 | www.国产视频 | 欧美精品二区 | 日韩在线中文字幕 | av手机天堂 | 免费在线黄色电影 | 亚洲小说春色综合另类 | 亚洲欧美日韩综合 | 丝袜脚交免费网站xx | 五月天综合| 黄色片视频网站 | 国产免费看 | 天天噜 | 国产精品视频一区二区三区, | 欧美三级a做爰在线观看 | 五月天激情综合网 | 成人看片泡妞 | 久久久久久网站 | 天堂成人网 | 黄色片一级片 | 日本免费一区二区三区 | 日韩免费一区二区三区 | www久久久| 亚洲黄色录像 | 国产一区二区三区在线看 | 国产中出| 黄色av软件| 久久精品99久久久久久久久 | 欧美射图| 国产成人高清 | 操比网站 | 色多多视频在线观看 | 伊人网在线| 99久久久成人国产精品 | 欧美一级黄色大片 | 污黄视频 | 浓精喷进老师黑色丝袜在线观看 | 欧美精品黑人猛交高潮 | 亚洲精品国产精品国自产观看 | 国产精品久久久午夜夜伦鲁鲁 | 四虎三级| 大桥未久在线视频 | 婷婷六月天| 日本美女视频 | 日韩精品视频一区二区 | 五月综合色 | 日韩午夜 | 久久精品影视 | 久久综合在线 | 亚洲区在线| 国产综合亚洲精品一区二 | 天堂网站 | 精品国产欧美一区二区三区成人 | 91麻豆精品秘密入口 | 在线视频一区二区 | 一区二区免费在线观看 | 永久免费看片在线播放 | 中文在线资源 | 伊人成人在线 | 秋霞在线观看视频 | 午夜精品久久久久 | 成人午夜影院 | 极品一线天小嫩嫩真紧 | 中文字幕码精品视频网站 | 精东影业一区二区三区 | 日韩a在线 | 久久久久久久久久久久久久久久久久 | 黄瓜视频在线免费观看 | 午夜18视频在线观看 | 日日干天天操 | 国产精品伦理 | av片网站| 久草免费在线观看 | 在线免费观看视频 | 黄色一级大片在线免费看国产一 | h片在线免费观看 | 国产aⅴ | 欧美理论| 欧美大片视频 | 一道本在线 | 成人免费在线视频 | 黄色片免费网站 | 亚洲一区二区三区 | 涩涩五月天 | 蜜臀久久精品久久久久 | www.一区二区 | 免费在线看a| 国产美女久久久 | 久草福利 | 日韩三级视频 | 亚洲无人区码一码二码三码的含义 | 日本成人在线播放 | 老司机精品福利视频 | 亚洲色图综合 | 久久av一区二区三区亚洲 | 手机av网 | 国产精品无码久久久久 | av片网址 | 99看片| 免费成人毛片 | 中文字幕成人 | 欧美大片在线看免费观看 | 午夜小视频在线观看 | 久久a视频 | 日本视频一区二区 | 欧美三级在线 | 色多多污 | 久久精品国产99精品国产亚洲性色 | 黄色在线播放 | 五月婷婷激情网 | 国产传媒一区二区三区 | 欧美日韩国产在线 | 电车里的日日夜夜 | 国产精品久久久久毛片大屁完整版 | 性欧美videos| 福利一区福利二区 | 久久久精品国产sm调教网站 | 一级免费视频 | 久久国产一区二区 | 中文字幕欧美激情 | 亚洲天天| 亚洲激情一区二区 | 亚洲免费观看视频 | 色婷婷精品国产一区二区三区 | 欧美精产国品一二三区 | 99成人 | 亚洲图片欧美 | 国产一级特黄aaa大片 | 一本色道久久88加勒比—综合 | av影音先锋 | 在线观看不卡av | 国产精品精东影业 | 亚洲免费观看高清完整版在线观看 | 四虎影库 | 日韩免费视频 | 污视频在线观看免费 | 日日天天| 在线观看黄网站 | 久久久久久久久久久久久久久久久久久 | 嫩草影院菊竹影院 | 亚洲精品小视频 | 久久人人爽 | 男人亚洲天堂 | 91免费国产| 中文字幕亚洲精品 | 99久久99久久久精品棕色圆 | 色婷婷电影 | 天天插天天| 久久久噜噜噜 | 国产成人在线观看免费网站 | 久操视频在线观看 | 日日夜夜草| 日韩精品第一页 | 97人人干 | 天天爽天天操 | 久热精品在线 | 久久久久久国产精品三级玉女聊斋 | 青青草国产| 日韩成人无码 | 亚洲美女网站 | 国产无套内射普通话对白 | 精品国产区 | 成人视频在线观看 | 国产91在线视频 | 九九精品在线观看 | 强伦轩人妻一区二区电影 | 国产伦精品一区二区 | 制服丝袜在线视频 | 久久精品视频18 | 天天插天天| 久久三级 | 一区二区三区人妻 | 四虎三级| 激情伊人 | 欧美第三页 | 911视频高清完整版在线观看 | 视频在线观看 | 后宫秀女调教(高h,np) | 天天久久 | 国产一区二区三区四区 | 一二三四区视频 | 伊人导航 | 放几个免费的毛片出来看 | 一区二区三区精品视频 | 黄瓜视频在线观看 | 福利二区 | 日韩国产在线 | 日本少妇xxxx | 日韩一区二区三区四区五区 | 欧洲一区二区 | 一级做a爰片毛片 | 免费网站观看www在线观看 | 日本大尺度做爰呻吟 | 亚洲成人精品在线观看 | 久久不卡| 国产精品久久久久久久久 | 中文字幕+乱码+中文乱码91 | 91免费视频观看 | 午夜久久久久 | 精品日韩一区二区 | 国产精品久久久久毛片大屁完整版 | 日日夜夜骑 | 1024手机在线看片 | 99久久婷婷国产综合精品草原 | 日本不卡在线 | 色综合av| 国产日韩精品视频 | 欧美一区二区三区在线观看 | 中文字幕日本 | 2019中文字幕在线观看 | 亚洲成人av在线播放 | 粗长+灌满h双龙h男男室友猛 | 国产一区二区三区在线免费观看 | 五月网| 高中男男gay互囗交观看 | 欧美成人乱码一区二区三区 | 国语对白做受欧美 | 可以免费看黄的网站 | 国产黄色一级片 | 在线久草 | 欧美精品久久 | 波多野结衣 在线 | 明星双性精跪趴灌满h | 亚洲人午夜射精精品日韩 | 精品欧美乱码久久久久久 | 男女靠逼视频 | 久久一区 | 欧美激情在线观看 | 福利在线观看 | 欧美精品欧美精品系列 | 国产情侣在线视频 | 性做久久久 | 人妻在客厅被c的呻吟 | 韩国精品一区 | 日韩精品在线观看视频 | 在线看片 | 波多野结衣 在线 | 99国产精品99久久久久久 | 日本黄色免费网站 | 亚洲天堂网在线观看 | 另类ts人妖一区二区三区 | 影音先锋成人资源 | 精品一区二区三区免费毛片 | 五十路妻 | 亚洲最大av网站 | 黄色女女| 欧美混交群体交 | 亚洲精品乱码久久久久久蜜桃91 | 成人动作片 | 天堂在线| 久操视频在线观看 | 91视频免费播放 | 96日本xxxxxⅹxxx70 | 欧美性猛片aaaaaaa做受 | 男人天堂 | 在线视频在线观看 | 亚洲欧洲综合 | 激情网五月天 | 男女做爰猛烈高潮描写 | 蜜桃免费视频 | 中文无码熟妇人妻av在线 | 搡老岳熟女国产熟妇 | 综合色区| 亚洲在线一区二区 | 国产麻豆一区二区三区 | www.欧美| 日日摸日日添日日躁av | 亚洲啊v | 中文字幕+乱码+中文字幕一区 | 在线观看91视频 | 精品国产乱码久久久久久蜜柚 | 欧美大片18| 天天做天天爱天天爽 | 大尺度在线观看 | 欧美精品一区二区三区蜜臀 | 免费国产网站 | 国产精品久久久久久久9999 | 国产精品色哟哟 | 99国产精品 | 美女久久久 | 在线视频福利 | 极品粉嫩小仙女高潮喷水久久 | 九九九精品视频 | 丰满少妇一区二区三区 | 97久久精品 | 中国少妇色 | 免费日批视频 | 伦伦影院午夜理伦片 | av毛片| 国产精品嫩草69影院 | 无码精品人妻一区二区三区漫画 | 97成人免费视频 | 手机在线观看av | 国产乱码一区二区三区 | 色天天综合网 | 高清欧美性猛交xxxx黑人猛交 | 久热精品视频 | 欧美激情一区二区三区 | 中文字幕一区二区人妻电影 | 黄色片免费网站 | 91久久久久久久 | 天天操操操| 久久美女视频 | 国内精品久久久久久久 | 97精品视频| 一区久久| 日本不卡一区二区三区 | 国产理伦| 国产精品毛片久久久久久久 | 波多野结衣在线观看 | 婷婷综合网 | 成人黄网免费观看视频 | 欧美亚洲视频 | 五十路妻| 国产女人18毛片水真多18精品 | 亚洲高清一区二区三区 | 91亚洲一线产区二线产区 | www日韩| 蜜桃精品噜噜噜成人av | 超碰人人草 | 亚洲国产91 | 偷拍一区二区三区 | 精品少妇人妻一区二区黑料社区 | 成人在线看片 | 一区二区三区免费观看 | 亚洲激情视频在线观看 | 麻豆视频在线 | 波多野结衣一二三区 | 天天看片天天爽 | 综合一区二区三区 | 国产一区二区三区四区在线观看 | 国产高清一区二区 | 日韩一二三区 | 欧美一区二区三区在线观看 | 午夜小电影 | 一本色道综合久久欧美日韩精品 | 99久久99| 日日夜夜精品 | 9.1成人看片| 一级片国产 | 亚洲视频第一页 | 黄色伊人 | 国产综合在线视频 | 亚洲视频免费 | 黄色一级毛片 | 精产国品一区二区三区 | 黄视频免费 | 日本一级黄色大片 | 欧美黑白配在线 | 91视频网| 性爱视频日本 | 无码精品一区二区三区在线播放 | av毛片在线 | 国产免费一级片 | 国产熟妇搡bbbb搡bbbb搡 | 99人妻碰碰碰久久久久禁片 | 久久这里只有 | 欧美日日| 午夜日韩 | 国产四区| 色一区二区 | 日本人妻一区二区三区 | 国产激情视频在线 | 亚洲第一免费视频 | 99热99| 九九免费视频 | 青青青国产| 成人午夜网站 | 国语对白做受按摩的注意事项 | 亚洲一区视频在线 | www.亚色| 脱女学生小内内摸了高潮 | 小柔的淫辱日记(h | 国产日韩欧美在线 | 日本免费一级片 | 污污网站在线观看 | 日韩欧美高清dvd碟片 | 男女免费网站 | 亚洲综合成人网 | 火影黄动漫免费网站 | 久久久一区二区三区 | 欧美日韩免费一区二区三区 | 性の欲びの女javhd | 激情视频网站 | 成人福利电影 | 日本三级日本三级日本三级极 | 日本一区二区三区在线观看 | 久久91精品| 一级黄色网址 | 修仙淫交(高h)h文 | 国产精品网址 | 国产专区在线 | www.亚洲天堂 | 精品在线免费观看 | 天堂中文资源在线 | 黄色片视频网站 | av无码一区二区三区 | 日韩在线一区二区三区 | 深夜福利电影 | 国产成人精品av | 丰满肉肉bbwwbbww | 久久亚洲国产 | 日韩一区电影 | 狠狠操狠狠操 | 成人播放| 超碰免费观看 | 护士的小嫩嫩好紧好爽 | 女人脱了内裤趴开腿让男躁 | 日本三级吃奶头添泬无码苍井空 | 超碰最新网址 | av一二三 | 老司机免费视频 | 久久人体 | 少妇高潮一区二区三区99 | 亚洲欧美在线播放 | 91嫩草欧美久久久九九九 | 97自拍| 国产一区二区在线播放 | 一起草av| 性欧美free | 毛片免费视频 | 成人永久免费视频 | 日本少妇喂奶 | 国产综合亚洲精品一区二 | 九九在线视频 | 久久久激情 | 爽爽淫人网| 高跟肉丝丝袜呻吟啪啪网站av | 成人片在线看 | 国产精品美女 | 涩涩视频在线观看 | 国产一区二区三区在线看 | 国产精品高潮呻吟 | 国产精品高潮呻吟久久 | 91中文字幕| 3p在线观看 | 亚洲av无码国产精品久久不卡 | 日本理论片午伦夜理片在线观看 | 国产精品美女在线观看 | 黄色美女视频网站 | 黑人一级片 | 天天干夜夜爽 | 色爱综合 | 国产在线观看av | 欧美成人精品一区二区三区 | 久久久久一区 | 艳妇臀荡乳欲伦交换h漫 | 亚洲一区二区久久 | 欧美高清性xxxxhdvideosex | 午夜一级 | 国产精品视频一区二区三区 | 污视频在线免费观看 | 人妻熟女一区二区三区 | 香蕉污视频 | 国产成年妇视频 | 精品少妇| 日本理论片午伦夜理片在线观看 | 欧美在线 | 精品一二三四 | 成年人在线视频 | 黄色国产视频 | 特级淫片裸体免费看 | 日韩中文字幕在线视频 | 日韩精品一区在线观看 | 91女人18毛片水多国产 | 吃奶动态图 | 夜夜操av | 欧美日韩国产在线 | 欧美videossex另类 | 日韩成人一区 | 拍国产真实乱人偷精品 | 波多野结衣影院 | 精品国产一区二区三区四区 | 欧美精品二区 | 欧美日韩在线免费观看 | 巨大黑人极品videos精品 | 欧美性生活 | 色在线播放 | 日韩一页 | 美女隐私无遮挡 | 97精品国产97久久久久久免费 | 一道本在线视频 | 性免费视频 | 天天干在线观看 | 一区二区三区国产精品 | 日韩国产在线 | 波多野结衣乳巨码无在线观看 | 天天色av | 国产不卡在线视频 | 成人在线精品 | 超碰小说 | 色欲av无码一区二区三区 | 亚洲精品国偷拍自产在线观看蜜桃 | 久色视频 | 久久精品在线观看 | 波多野结衣加勒比 | 动漫av在线| 三级视频在线观看 | 日韩黄色一级片 | 亚洲精品久久久久中文字幕二区 | 欧美一区二区三区免费 | 麻豆回家视频区一区二 | 国产乱国产乱老熟 | 污污的网站在线观看 | www毛片| 99热视 | 欧美国产一区二区 | 欧美九九 | silk在线观看 | 欧美激情图 | 艳妇臀荡乳欲伦交换h漫 | 成年人视频在线免费观看 | 午夜视频在线 | 日韩一级黄色片 | 国产一级在线 | 国产第二页| 丁香九月婷婷 | 麻豆三级 | 在线播放亚洲 | 五月天中文字幕 | 国产精品久久视频 | 波多野结衣无限发射 | 一级黄色免费视频 | 澳门久久 | 国产在线观看 | 春色网站 | 激情一区二区 | 都市激情校园春色 | www.av在线| aa片在线观看视频在线播放 | 97免费在线视频 | 国内精品视频在线观看 | 国产精品无码久久久久 | 久草超碰| 一区二区精品视频 | 国产精品海角社区 | 日本私人影院 | 无码精品一区二区三区在线 | 一区二区不卡 | 四虎影视www在线播放 | 亚洲精品自拍 | 51免费看成人啪啪片 | 国产视频不卡 | 成人网在线 | 精品一区二区三区三区 | 日韩电影一区二区三区 | 日日摸夜夜 | 成人精品 | 国产一级片| 久久99精品国产.久久久久久 | 国产一区二区视频在线 | 亚洲人在线 | 日本三级视频 | 婷婷久久综合 | www.黄色片| 日韩黄色片 | 久久黄色片 | 久久久久久久国产 | 欧美123区 | 青草视频在线免费观看 | 欧美成人精品欧美一级乱黄 | 成人黄色免费视频 | 黄视频在线 | 成人做爰100| 天堂中文在线视频 | 1000部做爰免费视频 | 亚洲国产成人av | 日本三级吃奶头添泬无码苍井空 | 国产又猛又黄又爽 | 成人免费在线观看 | 成人免费网址 | 日韩av资源| 久久久高清 | 男人的天堂亚洲 | av网站在线看 | 亚州成人 | 红杏网站 | 一级免费片 | www欧美 | 怡红院亚洲 | 欧美一区二 | 一本色道久久综合亚洲精品小说 | 中国黄色录像 | 苍井空亚洲精品aa片在线播放 | 国产a区 | 夜夜撸| 中文字幕乱妇无码av在线 | 国产精品福利在线观看 | 深夜在线视频 | 国产3区| 国产理论片 | 国产超帅gaychina男同 | 日韩高清av | 国产成人av在线播放 | 国产尤物在线 | 97国产成人无码精品久久久 | 中文在线资源 | 91亚洲精品国偷拍自产在线观看 | 91久久综合亚洲鲁鲁五月天 | 黄色片在线 | 成人免费毛片男人用品 | 美丽的姑娘观看在线播放 | 中文字幕av在线播放 | 日本不卡二区 | 欧美成人精品 | 天天射日日干 | 国产视频一区二区 | 成人黄色免费网站 | 国产美女一区 | 国产美女自拍视频 | 天堂一区二区三区 | 宝贝乖h调教灌尿穿环 | 国产精品一 | 天天摸天天操 | gogogo日本免费观看电视剧的软件 | 亚洲精品国产无码 | 丁香花电影免费播放电影| 无码人妻一区二区三区免费n鬼沢 | 五月开心网 | 日韩久久久 | 乳色吐息在线观看 | 国产美女在线播放 | www.超碰在线| 强伦轩人妻一区二区电影 | 日本天堂在线 | 一本一道久久a久久精品蜜桃 | 伊人亚洲 | 国产乱人伦 | 风间由美在线观看 | 这里只有精品在线观看 | 欧美激情性做爰免费视频 | 久久久久一区二区三区 | 国产网址 | 男人亚洲天堂 | 国产精品色呦呦 | 91精品国产欧美一区二区成人 | 超碰98| 成人免费福利视频 | 69视频在线 | 国产1页| 超碰在线免费 | 在线观看国产 | 中文字幕第三页 | av天天干 | 日韩一区二区在线视频 | 欧美专区在线观看 | 国产精品网站在线观看 | 涩漫天堂 | 超碰人人人 | 草草视频在线观看 | 99国产在线 | 青青操在线 | 成人羞羞国产免费 | 久久黄色| 中文字幕在线观看视频www | 国产日批| 欧美日韩亚洲一区二区 | 日韩毛片在线观看 | 亚洲欧美日韩在线 | 亚洲97 | 欧美日韩一区二区三区 | 国产毛片av | 日本特黄视频 | 亚洲第一色图 | 荒岛淫众女h文小说 | 五月天激情小说 | 狠狠撸在线 | 初尝情欲h名器av | 国产高清视频在线 | 国产综合视频 | 视频在线观看免费 | 99综合| 天天天天干 | 性开放耄耋老妇hd | 91调教打屁股xxxx网站 | 精品久久一区二区 | 成人免费毛片男人用品 | 精品国产一区二区三区四区 | 四虎新网址 | 中国一级特黄真人毛片免费观看 | 久久久久久网站 | 日韩在线电影 | 97人妻精品一区二区三区软件 | 欧美九九| 揉我啊嗯~喷水了h视频 | 日本在线一区二区 | 欧美激情一区 | 久久免费高清视频 | 国产探花视频在线观看 | 久久国产精品无码一级毛片 | 欧美xx孕妇| 日本吃奶摸下激烈网站动漫 | 国产一级视频 | 成人福利网 | 国产精品视频一区二区三区 | 免费日韩av | 四虎黄色 | 国产综合亚洲精品一区二 | 日韩在线小视频 | 成人免费毛片app | 日韩中文字幕 | 日韩一区在线播放 | 美女视频一区 | 国产中文字幕在线观看 | 三级视频网站 | 91爱爱网 | 久本草精品 | 久久av电影| 蜜桃av网站| 91免费看 | 中出在线观看 | 五月天婷婷在线观看 | 91精品一区二区 | 手机免费av | 色综合网站 | 一本色道久久综合熟妇 | 四虎8848精品成人免费网站 | 中文字幕一区二区三区夫目前犯 | 国产美女久久久 | 久久精工是国产品牌吗 | 日日夜夜天天 | 日韩精品人妻中文字幕 | 久久久精品国产sm调教网站 | 日本一区免费 | 国产视频一区二区 | 综合婷婷| 日韩精品视频在线播放 | 久久露脸国语精品国产91 | 精品久久久久久久久久久久久久 | 动漫艳母在线观看 | 香蕉视频在线观看免费 | 无码人妻一区二区三区免费n鬼沢 | 成人依依 | 两性囗交做爰视频 | 久久久久久久无码 | www.国产在线 | 成人精品电影 | 亚洲精品99| 亚洲二区在线观看 | 亚洲精品一区中文字幕乱码 | 亚洲iv一区二区三区 | 国产a√| 秋霞国产午夜精品免费视频 | 国产一区二区三区免费观看 | 国产极品美女高潮无套嗷嗷叫酒店 | 中文字幕日韩欧美 | 男人和女人免费观看电视连续剧 | 黄色天堂 | 天堂网www| 欧美视频在线观看 | 麻豆国产一区二区三区四区 | 午夜精品电影 | 欧美日韩在线观看视频 | 麻豆国产在线 | 男女互操视频 | 美女超碰| 欧洲一级片 | 深夜福利网 | 壮汉被书生c到合不拢腿 | 一级黄色片在线观看 | 情不自禁电影 | 一区中文字幕 | 狠狠插狠狠操 | 乱h伦h女h在线视频 黑料网在线观看 | 一本在线 | 人人干人人爽 | 国产激情一区二区三区 | 成人黄视频 | av久久| 国产白丝精品91爽爽久久 | 性欧美高清 | 精品国产91| 捆绑调教sm束缚网站 | 在线观看黄色av | 麻豆精品国产传媒av绿帽社 | 中文字幕永久在线 | 国产一区二区三区免费 | 久久久久久电影 | 黄色一级片免费看 | 色婷婷综合久久久中文字幕 | 久久久久久网 | 人妻无码中文字幕 | 性xxxx狂欢老少配o | 亚洲精品在线观看视频 | 狠狠狠狠干 | 天堂8在线 | 成人av免费 | 名校风暴在线观看免费高清完整 | 日韩精品欧美 | 99激情| 欧美日韩专区 | 亚洲激情在线视频 | 黄色免费网站在线观看 | 色婷婷综合网 | 国产精品视频一区二区三区, | 亚洲天天| 精品一二三区 | 亚洲视频精品 | 亚洲免费黄色 | 伊人久久大香线蕉av一区 | 中文字幕欧美激情 | 国产精品日韩无码 | 丰满岳乱妇一区二区三区 | 中文字幕你懂的 | 日韩中文字幕一区二区 | 成人动漫在线观看 | 久久久久国产一区二区三区 | 秋霞视频在线观看 | 色人人 | 亚洲国产成人精品女人久久久 | 久免费一级suv好看的国产 | 久久五月婷 | 亚洲一区二区av | 一级片在线播放 | 成人免费在线电影 | 久久久久久久国产精品 | 一道本在线视频 | www.狠狠| av黄色小说 | 九色91| 91麻豆精品国产 | 欧美精品一区二区在线观看 | 久久美女视频 | 亚洲熟女乱色综合亚洲av | 亚洲free性xxxx护士白浆 | 久久国产精品视频 | 野外(巨肉高h) | 国产又粗又大又爽 | 91精品网站| av片网址| 51免费看成人啪啪片 | 日韩av综合 | 性xxxfllreexxx少妇| 成人福利网| 狠狠人妻久久久久久综合蜜桃 | 国产极品美女高潮无套嗷嗷叫酒店 | 九九九久久久 | 美女被草| 日韩成人免费电影 | 成人精品一区二区三区中文字幕 | 91av在线免费观看 | 久久av一区二区三区亚洲 | 香蕉在线观看 | 婷婷九月 | 国产视频第一页 | 国产精品无码一区二区三区免费 | 久久h| 成年人在线观看免费视频 | 他揉捏她两乳不停呻吟动态图 | 999在线视频 | 一级在线| 人人爽久久涩噜噜噜网站 | 先锋影音av资源网 | 足交在线观看 | 少妇一级淫片免费看 | 亚洲成人一区二区 | 91看片看淫黄大片 | 久草中文在线 | 毛片在线免费 | 欧美三级在线播放 | 波多野结衣毛片 | 中文字幕三区 | 丁香花电影免费播放电影| 久久精品视频在线观看 | 国产色片 | 性色av一区二区三区 | 亚洲天堂男人 | 横恋母在线观看 | 日本美女性爱视频 | 欧美日韩精品一区 | 91久久| 成人免费看 | 免费在线黄色网址 | 日本不卡在线观看 | 欧美性生活 | 男人在线天堂 | 丁香花电影免费播放电影| 粗大黑人巨茎大战欧美成人免费看 | 在线观看www| 久久99精品国产 | 精品一区在线 | 五月天婷婷丁香 | 日本在线 | 久久久香蕉 | 91爱视频 | 在线看91 | 香蕉在线播放 | 欧美亚洲天堂 | 久久久久精 | 欧美性猛交xxxx乱大交3 | 精品一二三四 | 国产亚洲色婷婷久久99精品91 | 黄色免费视频网站 | 久久精品国产99精品国产亚洲性色 | 中文字幕在线免费观看视频 | 韩国精品一区二区 | 午夜激情视频在线观看 | 亚洲精品无码久久久 | www一区二区三区 | 国产精品久久久久久久久 | 911视频高清完整版在线观看 | 一级a毛片 | 天堂av中文在线 | 欧美1区| 亚洲一区二区在线视频 | 欧美超碰在线 | 日韩综合网 | 免费看裸体视频 | 插插网站 | 日韩女优在线 | 亚洲日本中文字幕 | 老司机福利在线观看 | 男人操女人网站 | 国产成人无码一区二区在线观看 | 尤物videos另类xxxx | 性欧美精品 | 欧美影视| 欧美性猛交一区二区三区精品 | 成人激情视频在线观看 | 熟女肥臀白浆大屁股一区二区 | 欧美成人精品一区二区三区 | 免费看片91 | 日韩在线免费视频 | 亚洲一区二区 | 91精品久久久久久久久久 | 日本午夜影院 | 亚洲一区二区视频在线观看 | 日韩一区二区三区四区 | 日韩精品在线观看视频 | 国产成人无码精品亚洲 | 久久久久久久久免费看无码 | 亚洲超碰在线 | 夜夜骚av一区二区三区 | 狠狠爱av | 东北毛片 | 亚洲经典一区 | 全部孕妇毛片丰满孕妇孕交 | 国产老头和老头xxxx× | 青青在线 | 国产激情片 | 日本在线 | 一级片av| 羞羞动漫在线观看 | 古装做爰无遮挡三级 | 四季av一区二区凹凸精品 | 久久综合伊人 | 在线播放中文字幕 | 欧美黄色小说 | 未满十八18禁止免费无码网站 | 女人久久 | 久久这里只有 | 中文字幕www | 免费做a爰片77777 | 一本色道久久88加勒比—综合 | 福利在线播放 | 成年人免费看视频 | 国产无精乱码一区二区三区 | 欧美日韩在线观看视频 | 日韩色网站 | 国产香蕉av | 色欲久久久天天天综合网 | 久久久久久久久久久久久久 | 国产剧情自拍 | 特黄aaaaaaa片免费视频 | 四房婷婷 | 97精品视频 | 中文字幕毛片 | 欧美激情影院 | 最近中文字幕免费 | 久久手机视频 | 麻豆一区二区 | 少妇真人直播免费视频 | 国产精品无码一区二区三区免费 | 中文字幕乱妇无码av在线 | 一级免费毛片 | 国产综合精品 | 五月网| 美女无遮挡免费视频 | 香蕉久久a毛片 | 久久视频在线观看 | 亚洲精品网站在线播放gif | 国产激情在线视频 | 波多野结衣 在线 | 亚洲精品一二三 | 国产精品国产成人国产三级 | 在线观看www| 亚洲国产精品一区 | 久久午夜无码鲁丝片午夜精品 | 在线看片网站 | 在线观看高清视频 | 国产精品久久久久久久9999 | 欧美h视频| 国产人成一区二区三区影院 | 精品人妻一区二区三区换脸明星 | 婷婷色av| 久久亚洲电影 | 国产在线看片 | 亚洲欧洲综合 | 男女激情大尺度做爰视频 | 国产精品偷乱一区二区三区 | 强迫凌虐淫辱の牝奴在线观看 | 天天操天天操天天操 | 美国一级黄色大片 | 亚洲综合一区二区三区 | 亚洲网站在线观看 | 超碰首页 | 天天色综 | 成人国产 | 好看的中文字幕 | 久久精品在线视频 | 视频在线看 | 1000部做爰免费视频 | 日本中文在线 | 91精品国产aⅴ一区二区 | 国产精品久久久久久网站 | 蜜桃传媒一区二区 | 中文字幕视频在线观看 | 日韩第一页 | 国产在线免费观看 | 国产成人毛片 | 日韩欧美高清dvd碟片 | 色婷婷一区二区 | 欧美天天 | 日韩一级在线观看 | 久久精品毛片 | 黄色成人在线 | 亚洲精品福利视频 | 97影视| 国产肥白大熟妇bbbb视频 | 天天操天天舔 | 亚洲人网站 | 亚洲精品中文字幕在线观看 | 中文字幕日韩人妻在线视频 | 成人久久久久 | 中文字幕在线观看一区 | 麻豆app | 久热中文字幕 | 光明影院手机版在线观看免费 | 一区二区在线免费观看 | 国产一区二区精品丝袜 | 伊人久久大香线蕉av一区 | 色播五月婷婷 | 日本免费黄色片 | 午夜视频在线看 | 一本色道久久88加勒比—综合 | 亚洲精品字幕在线观看 | 在线视频一区二区 | 久艹在线 | 神马三级我不卡 | 亚洲欧美自拍偷拍 | 动漫毛片| 日韩精品影院 | 国产精品无码在线播放 | 一区二区三区在线免费观看 | 欧美成人高清 | 国产综合亚洲精品一区二 | 天堂网中文字幕 | 国产精品高潮呻吟久久 | 欧美视频在线播放 | 一极毛片 | 久草福利| 亚洲三级在线观看 | 草莓视频www | 天天做天天爱 | 窝窝午夜精品一区二区 | 欧美mv日韩mv国产网站 | 亚洲天天干 | 午夜在线观看视频网站 | 欧美黑人猛交 | 六月天婷婷 | av在线天堂 | 91爱视频| 视频在线观看免费高清完整版在线观看 | 特黄aaaaaaaaa毛片免费视频 | 亚州中文字幕 | 亚洲av无码一区二区三区dv | 成人免费观看视频 | 青青草av | 国产精品视频免费 | 波多野结衣一区二区 | 日本人妻丰满熟妇久久久久久 | 伊人影院在线观看 | 日本黄色一级 | www.欧美 | 91亚洲精品久久久久久久久久久久 | 免费成人深夜夜视频 | 男女日皮视频 | 欧美草逼视频 | 国产精品无码一区二区三区 | 色欲av无码一区二区三区 | 中国黄色大片 | av网站免费在线观看 | 国产精品一二三区 | 羞羞漫画在线 | 欧美一区三区 | 欧美国产一区二区三区 | 91伦理| 干爹你真棒插曲mv在线观看 | 看片在线| 99黄色| 欧美顶级少妇做爰hd | 男18无遮挡脱了内裤 | 亚洲同性gay激情无套 | 波多野结衣黄色 | 成人激情视频 | 亚洲欧美国产精品专区久久 | 国产精品无码永久免费不卡 | 亚洲精品网站在线播放gif | 一二三四在线视频 | 黄色三级带 | 成人禁污污啪啪入口 | 久久嫩草精品久久久久 | 美女88av| 免费成人毛片 | 欧美乱码精品一区二区三区 | 午夜成人在线视频 | 亚洲小说春色综合另类 | 久久久久久精 | 波多野结衣av在线播放 | 一级片免费观看 | 天天操操操 | 99看片| 末路1997全集免费观看完整版 | 五月婷婷av| 91麻豆传媒 | 天天干天天操天天爽 | 日韩免费一区二区 | 三上悠亚一区二区 | 一本一道久久a久久精品蜜桃 | 91看片在线| 美女视频一区 | 日韩人妻一区二区三区 | 免费久久久 | 国产国语老龄妇女a片 | 国产成人精品一区 | 污视频在线观看网站 | 在线观看国产一区 | 国产精品区二区三区日本 | 午夜男人天堂 | 91五月天| 九九色综合 | 五月天激情电影 | 野外吮她的花蒂高h在线观看 | 高清欧美性猛交xxxx黑人猛交 | 中日韩一级片 | 波多野结衣电影免费观看 | 欧美大浪妇猛交饥渴大叫 | 一级黄色电影片 | 国产精品高清无码 | 中文在线字幕免费观 | 黄色小说免费观看 | 国产又粗又硬又长又爽的演员 | 丰满少妇一区二区三区 | 国产suv精品一区二区6 | 好大好爽视频 | 乖乖女的野男人们np | 亚洲小说春色综合另类 | 免费国产视频 | 日本亚洲欧美 | 快播黄色电影 | 四虎8848精品成人免费网站 | 欧美人妖老妇 | 女性裸体下面张开 | 伊人超碰 | 亚洲九九| 岛国av片| 国产av一区二区三区精品 | 污片网站 | 日本一级做a爱片 | 午夜视频在线免费观看 | 亚洲国产精品自拍 | 天天色视频 | 欧美视频免费 | 91在线无精精品白丝 | 欧美在线观看视频 | 特黄三级又爽又粗又大 | 国产毛片基地 | 国产精品自拍偷拍 | 波多野结衣vs黑人巨大 | 欧美在线视频一区 | 欧美精品乱码视频一二专区 | 黄色短视频在线观看 | 午夜视频网 | 久久丁香 | 久久久一区二区三区 | 天堂久久精品忘忧草 | aaa在线| 女同一区二区 | 视频在线免费观看 | 激情亚洲| 成人av小说 | 性爱视频日本 | 亲嘴扒胸摸屁股免费视频日本网站 | 高清一区二区三区 | 插曲在线高清免费观看 | 国产一区二区三区免费 | 一区二区视频 | 亚洲国产精品视频 | 亚洲爆乳无码一区二区三区 | 日韩99| 日韩欧美国产精品 | 麻豆传媒在线播放 | 久久免费精品 | 欧美精品网站 | 在线爱情大片免费观看大全 | 亚洲欧美一区二区三区在线 | 日韩免费 | 娇小激情hdxxxx学生 | 国产三级精品三级在线观看 | 9.1成人免费看片 | 国产视频观看 | 日本不卡高清 | 99视频在线免费观看 | 999国产精品| 亚洲色图偷拍 | 成人动漫视频 | 超碰97免费| 色哟哟入口国产精品 | 国产午夜精品久久久 | 中文在线字幕免费观看 | 91一区二区 | 国产不卡在线观看 | 日本毛片在线观看 | 国产免费高清视频 | 婷婷午夜天| 色欲av伊人久久大香线蕉影院 | 午夜激情视频在线观看 | 伊人中文字幕 | 天天摸天天爽 | 国产福利视频 | 污污的视频在线观看 | 住在隔壁的她动漫免费观看全集下载 | av最新网址| 麻豆传谋在线观看免费mv | 美女一级视频 | 色狠狠av | 国产福利视频在线观看 | 国产精品网站在线观看 | 香蕉视频91 | 欧美日韩国产高清 | 尤物精品| 日韩黄色小视频 | 色男人天堂| 国产成人精品一区二区三 | 欧美精品乱码99久久蜜桃 | 成人激情在线 | 一本色道久久综合狠狠躁的推荐 | 日韩欧美一级 | 麻豆激情视频 | 日本一级黄色 | 国产精品乱码一区二区 | 亚洲三级av | 欧美激情图 | 夜夜视频| 欧美mv日韩mv国产网站 | 中文字幕专区 | 免费中文字幕日韩欧美 | 国产精品久久久久久久久久久久久 | 99热国产精品 | 黄色片在哪里看 | 18成人免费观看网站下载 | 亚洲精品97久久中文字幕无码 | 一级片在线免费观看 | 日本三级片在线观看 | 亚洲精品福利 | 国产精品一品二区三区的使用体验 | 日日干日日操 | 欧美三级网站 | 91在线无精精品入口 | 精品亚洲一区二区三区 | 国产一区在线看 | 91久久视频 | 波多野结衣在线观看视频 | 91禁在线观看 | 中国极品少妇xxxxx | 日本一级做a爱片 | 中文字幕精品久久久久人妻红杏ⅰ | 日日操夜夜干 | av在线免费观看网站 | 蜜桃视频一区二区 | 欧美日韩在线一区二区 | 亚洲精品国产精品国自产观看 | 两个人做aj的视频教程高清 | 高跟肉丝丝袜呻吟啪啪网站av | 91蝌蚪少妇偷拍 | 狂野欧美 | 青青国产视频 | 国产精品你懂的 | 高清国产mv在线观看 | 我想看毛片 | 超碰人人干 | 亚洲视频在线观看 | 最近中文字幕免费 | 欧美九九 | 色婷婷av一区二区三区软件 | 欧美三级大片 | 成人看片网站 | 日本一级片 | 久久免费精品 | 一区二区在线免费观看 | 亚洲一卡二卡三卡 | 欧美裸体视频 | 国产精品免费看 | 天天干天天干 | 麻豆乱淫一区二区三区 | 午夜大片| 日韩毛片在线观看 | 婷婷午夜| 999国产精品| 超碰免费在线 | 欧美精产国品一二三区 | 久久只有精品 | 日本免费观看视频 | 亚洲熟女乱色综合亚洲av | 亚洲日本一区二区 | 香蕉视频免费 | 黑人性视频 | 成都4电影免费高清 | 日韩一级在线观看 | 欧美性生交xxxxx | 中文字幕黄色 | 超碰美女| 中文字幕一区二区三区人妻电影 | 羞羞网站在线观看 | 免费一区 | 美女被捅个不停 | 麻豆免费视频 | 人妻体内射精一区二区 | 视频在线一区 | 国产精品国产 | 人妻熟女一区二区三区 | 成人av免费观看 | 国产黑丝在线 | 欧美精品久久久久久 | 国精品无码人妻一区二区三区 | 欧美日韩久久久 | 国产乡下妇女做爰视频 | 日本高清不卡视频 | 天堂综合网| 中文字幕乱码在线人视频 | 国产午夜av | 无码人妻精品一区二区三 | 日韩精品一区二区在线观看 | 在线爱情大片免费观看大全 | 精品爆乳一区二区三区无码av | 狂躁美女大bbbbbb黑人 | 久久久久久久亚洲 | 日本丰满少妇 | 久久久久久免费毛片精品 | 欧美日韩一区二区在线观看 | 欧美激情区 | 欧美大逼 | 波多野结衣一区二区 | 亚洲男人天堂av | 激情婷婷 | 丁香九月婷婷 | 三级黄色小说 | 在线97| 黄色a一级 | 日本一级黄色 | 日本黄色片 | 中文字幕在线免费 | 国产精品久久久久久久久久久久久久 | 不卡视频在线观看 | 欧美色图第一页 | 国产又粗又大又长 | 久久久精品国产 | 精品国产91乱码一区二区三区 | av黄色在线 | 亚洲一区二区三区在线视频 | 亚洲福利影院 | 污视频网站在线观看 | 麻豆传媒在线观看 | 农村激情伦hxvideos | 欧美日韩国产成人 | 91吃瓜在线| 亚洲高清在线 | 欧美日韩国产高清 | 激情婷婷| 性生交大片免费看 | 99人妻碰碰碰久久久久禁片 | 国产一级片在线播放 | 欧美高清性xxxxhdvideosex | 国产午夜激情 | 黄网在线 | 国产高潮视频 | 天天操天天干天天 | 精品视频一区二区 | 免费裸体视频 | 中文字幕91 | 麻豆激情视频 | 国产精品永久免费 | www.国产一区 | 国产乱论| 国产高清网站 | 伊人久操 | 久久在线视频 | 青青伊人网 | 成人黄网免费观看视频 | 午夜看看 | 99精品视频免费观看 | 蜜臀av一区二区 | 精东影业一区二区三区 | 在线观看国产精品入口男同 | 国产麻豆一区二区三区 | 国产精品免费无遮挡无码永久视频 | 久久精品二区 | 国产精品久久777777 | 精品视频久久 | 九九热在线观看 | 色欲av永久无码精品无码蜜桃 | 97在线视频观看 | 欧美性另类| 午夜天堂| www一区二区 | 欧美日韩久久久 | 欧美自拍偷拍 | 亚洲精品一区中文字幕乱码 | 在线播放你懂的 | 欧美成人精品激情在线观看 | 亚洲视频欧美视频 | 天天色综 | av一区二区在线观看 | 国产三级在线 | 精品福利在线观看 | 韩国三级hd中文字幕的背景音乐 | 欧日韩av | 精品国产99 | 精品亚洲一区二区 | 欧美激情在线播放 | 在线视频在线观看 | 精品久久影院 | 麻豆视频网站 | 热久久精品| 国产精品久久久久久久久久久免费看 | 天天操夜夜操狠狠操 | 亚洲av成人片色在线观看高潮 | 久草免费在线 | 亚洲综合免费观看高清完整版 | 国产亚洲精品码 | 91免费看网站 | 欧美一二三 | 欧美偷拍视频 |