黄色小说视频-日本少妇高潮抽搐-国内自拍av-天堂中文资源在线-蜜桃视频在线入口www-91久久综合-亚洲视频在线一区-日日夜夜拍-国产精品资源在线观看-欧美激情国产精品免费-人妻少妇久久中文字幕-成人免费无码大片a毛片-香蕉污视频在线观看-日本电影成人-国内精品久久99人妻无码

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > ATCC代理 > Aspergillus niger van Tieghem
最近瀏覽歷史
聯系我們
  • 0574-87157013
  • mingzhoubio@163.com
  • 浙江省寧波市鎮海區莊市街道興莊路9號
  • 創e慧谷42號樓B幢401室
Aspergillus niger van Tieghem
Aspergillus niger van Tieghem
規格:
貨期:
編號:B176375
品牌:Mingzhoubio

標準菌株
定量菌液
DNA
RNA

規格:
凍干粉
斜面
甘油
平板


產品名稱 Aspergillus niger van Tieghem
商品貨號 B176375
Strain Designations NRRL 599 [Doelger 2, IMI 41874, X-172]
Application
Degrades acronine acronycine
Degrades apple pomace
Degrades brewery wastes
Degrades cotton wastes
Degrades inulin
Degrades molasses
Degrades pineapple wastes
Produces 12-hydroxy-trans-nerolidol
Produces 18-homo-19-norcortisone
Produces 18-homo-19-norhydrocortisone
Produces 9-hydroxyacronycine
Produces L-malic acid
Produces citric acid citrate
Produces gluconic acid
Produces grindelane dimers
Produces hydroxygrindelanes
Produces hydroxylated biphenyl compounds
Produces hydroxylated steroids steroids, hydroxylated
Produces lipase
Reduces 3,5-dimethoxycinnamic acid
Reduces 3-methobenzoic acid
Reduces 3-methoxy-8(14)-seco-1,3,5(10),9(11)-estratetraene-14,17-dione
Transforms acronine acronycine
Transforms chromanone
Transforms flavonoids
Biosafety Level 1

Biosafety classification is based on U.S. Public Health Service Guidelines, it is the responsibility of the customer to ensure that their facilities comply with biosafety regulations for their own country.

Product Format freeze-dried
Storage Conditions Frozen: -80°C or colder
Freeze-Dried: 2°C to 8°C
Live Culture: See Propagation Section
Type Strain no
Preceptrol® no
Medium ATCC® Medium 200: YM agar or YM broth
ATCC® Medium 323: Malt agar medium
ATCC® Medium 336: Potato dextrose agar (PDA)
Growth Conditions
Temperature: 24°C to 26°C
Atmosphere: Typical aerobic
Sequenced Data
18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence

GGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCGAGTGCGGGTCCTTTGGGCCCAACCTCCCATCCGTGTCTATTGTACCCTGTTGCTTCGGCGGGCCCGCCGCTTGTCGGCCGCCGGGGGGGCGCCTCTGCCCCCCGGGCCCGTGCCCGCCGGAGACCCCAACACGAACACTGTCTGAAAGCGTGCAGTCTGAGTTGATTGAATGCAATCAGTTAAAACTTTCAACAATGGATCTCTTGGTTCCGGCATCGATGAAGAACGCAGCGAAATGCGATAACTAATGTGAATTGCAGAATTCAGTGAATCATCGAGTCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGGGGCATGCCTGTCCGAGCGTCATTGCTGCCCTCAAGCCCGGCTTGTGTGTTGGGTCGCCGTCCCCCTCTCCGGGGGGACGGGCCCGAAAGGCAGCGGCGGCACCGCGTCCGATCCTCGAGCGTATGGGGCTTTGTCACATGCTCTGTAGGATTGGCCGGCGCCTGCCGACGTTTTCCAACCATTCTTTCCAGGTTGACCTCGGATCAGGTAGGGATACCCGCTGAACTTAAGCATATCAATAA


D1D2 region of the 28S ribosomal RNA gene

ATATCAATAAGCGGAGGAAAAGAAACCAACCGGGATTGCCTCAGTAACGGCGAGTGAAGCGGCAAGAGCTCAAATTTGAAAGCTGGCTCCTTCGGAGTCCGCATTGTAATTTGCAGAGGATGCTTTGGGTGCGGCCCCCGTCTAAGTGCCCTGGAACGGGCCGTCAGAGAGGGTGAGAATCCCGTCTTGGGCGGGGTGTCCGTGCCCGTGTAAAGCTCCTTCGACGAGTCGAGTTGTTTGGGAATGCAGCTCTAAATGGGTGGTAAATTTCATCTAAAGCTAAATACTGGCCGGAGACCGATAGCGCACAAGTAGAGTGATCGAAAGATGAAAAGCACTTTGAAAAGAGAGTTAAACAGCACGTGAAATTGTTGAAAGGGAAGCGCTTGCGACCAGACTCGCCCGCGGGGTTCAGCCGGCATTCGTGCCGGTGTACTTCCCCGTGGGCGGGCCAGCGTCGGTTTGGGCGGCCGGTCAAAGGCCCCTGGAATGTAGTGCCCTCCGGGGCACCTTATAGCCAGGGGTGCAATGCGGCCAGCCTGGACCGAGGAACGCGCTTCGGCACGGACGCTGGCATAATGGTCGTAAACGAC


beta-tubulin gene

TTGCCCTCCCCGTCCCTCGTCCGTCAGGAGACGCGTCGTTGGTTGGCATCTCTTTTGCTCGGGACCCCACCGGTTCTTCGACCAACTCATTCTTGTGCTAACTGCATGTCTTCTTCGCTTCATAGGTTCACCTCCAAACCGGCCAGTGTGTAAGTGCCAATATATGCTTCGGATGATTGCCCCCAAGGGTCTTGATTGGTGTTTGGTGGACTAAACAATATATCATGGTGGTTAGGGTAACCAAATTGGTGCTGCTTTCTGGTACGTATACAACTGCCATTGGATTGGGGATGGAACATCGTCTCTTAGGCTATCTCAGCTTGAGTTCAGATGTTGTCCATTAGGTACATGCTATCGGTCTAAGAACACGTCTAACAATTCAACAGGCAGACCATCTCTGGCGAGCACGGCCTTGACGGCTCCGGTGTGTAAGTGCAACTTTTTCACACCTCTCAATTGGTCAACAATGGGCAAAGGGTTGGGTCTTCTGACACGCAGGATAGTTACAATGGCACCTCCGACCTCCAGCTGGAGCGCATGAACGTCTACTTCAACGAGGTGAGATCCATCGGACCTTGGCTTTTTCACGACAATATCATCAATGTCCTAATCACTTCAGCAGGCTAGCGGTAACAAGTATGTTCCTCGTGCCGTCCTCGTCGACCTCGAGCCCGGTACCATGGACGCCGTCCGTGCCGGTCCTTTCGGCCAGCTCTTCCGCCCCGACAACTTCGTCTTCGGCCAGTCCGGTGCTGGTAACAACTGG

Name of Depositor NRRL
Chain of Custody
ATCC <-- NRRL <-- A.J. Moyer strain Doelger 2
References

Bercovitz A, et al. Localization of pyruvate carboxylase in organic acid-producing Aspergillus strains. Appl. Environ. Microbiol. 56: 1594-1597, 1990. PubMed: 2383004

Schwartz RD. Microbial production of hydroxylated biphenyl compounds. US Patent 4,153,509 dated May 8 1979

Gadsby B, Greenspan G. C-21 hydroxylation products of steroids. US Patent 3,529,000 dated Sep 15 1970

Gibian H, et al. Production of optically active antipodes. US Patent 3,562,112 dated Feb 9 1971

Arfmann HA, Abraham WR. Microbial reduction of aromatic carboxylic acids. Z. Naturforsch. Sect. C Biosci. 48: 52-57, 1993.

Auret BJ, Holland HL. Microbiological 18-hydroxylation of steroids. J. Chem. Soc. Commun. 1195: 1157, 1971.

Roukas T. Production of citric acid from beet molasses by immobilized cells of Aspergillus niger. J. Food Sci. 56: 878-880, 1991.

Drysdale CR, McKay AM. Citric acid production by Aspergillus niger in surface culture on inulin. Lett. Appl. Microbiol. 20: 252-254, 1995. PubMed: 7766122

Ibrahim AR, Abul-Hajj YJ. Microbiological transformation of chromone, chromanone, and ring A hydroxyflavones. J. Nat. Prod. 53: 1471-1478, 1990. PubMed: 2089118

Tran CT, et al. Selection of a strain of Aspergillus for the production of citric acid from pineapple waste in solid-state fermentation. World J. Microbiol. Biotechnol. 14: 399-404, 1998.

Heinrich M, Rehm HJ. Formation of gluconic acid at low pH-values by free and immobilized Aspergillus niger during citric acid fermentation. Eur. J. Appl. Microbiol. Biotechnol. 15: 88-92, 1982.

Doelger WP, Prescott SC. Citric acid fermentation. Ind. Eng. Chem. 26: 1142-1149, 1934.

Betts RE, et al. Microbial transformations of antitumor compounds. I. Conversion of acronycine to 9-hydroxyacronycine by Cunninghamella echinulata. J. Med. Chem. 17: 599-602, 1974. PubMed: 4829940

Hang YD, Woodams EE. Apple pomace: a potential substrate for citric acid production by Aspergillus niger. Biotechnol. Lett. 6: 763-764, 1984.

Roukas T, Kotzekidon P. Production of citric acid from brewery wastes by surface fermentation using Aspergillus niger. J. Food Sci. 51: 225-228, 1986.

Hoffmann JJ, et al. Hydroxygrindelane derivatives by microbial transformation. Phytochemistry 27: 2125-2127, 1988.

Arfmann HA, et al. Microbial omega-hydroxylation of trans-nerolidol and structurally related sesquiterpenoids. Biocatalysis 2: 59-67, 1988.

Roukas T, Alichanidis E. Citric acid production from beet molasses by cell cycle of Aspergillus niger. J. Ind. Microbiol. 7: 71-74, 1991.

Hoffmann JJ, et al. Formation of grindelane dimers by microbial transformation. Phytochemistry 31: 3045-3049, 1992.

Ibrahim AR, Abul-Hajj YJ. Microbiological transformation of (+/-)-flavanone and (+/-)-isoflavanone. J. Nat. Prod. 53: 644-656, 1990. PubMed: 2213034

Miura S, et al. Prostaglandin chemistry -- IV. Microbiological kinetic resolution and asymmetric hydrolysis of 3,5-diacetoxycyclopent-1-ene. Tetrahedron 32: 1893-1898, 1976.

Kiel H, et al. Citric acid fermentation by Aspergillus niger on low sugar concentrations and cotton waste. Appl. Environ. Microbiol. 42: 1-4, 1981.

Martinez-Culebras PV, et al. Molecular characterization of the black Aspergillus isolates responsible for ochratoxin A contamination in grapes and wine in relation to taxonomy of Aspergillus section Nigri. Int. J. Food Microbiol. 132: 33-41, 2009. PubMed: 19401261

梅經理 17280875617 1438578920
胡經理 13345964880 2438244627
周經理 17757487661 1296385441
于經理 18067160830 2088210172
沈經理 19548299266 2662369050
李經理 13626845108 972239479